Model save
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
base_model: codellama/CodeLlama-7b-hf
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: sql-code-llama-alan
|
8 |
+
results: []
|
9 |
+
library_name: peft
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# sql-code-llama-alan
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.4576
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
|
36 |
+
The following `bitsandbytes` quantization config was used during training:
|
37 |
+
- quant_method: bitsandbytes
|
38 |
+
- _load_in_8bit: True
|
39 |
+
- _load_in_4bit: False
|
40 |
+
- llm_int8_threshold: 6.0
|
41 |
+
- llm_int8_skip_modules: None
|
42 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
43 |
+
- llm_int8_has_fp16_weight: False
|
44 |
+
- bnb_4bit_quant_type: fp4
|
45 |
+
- bnb_4bit_use_double_quant: False
|
46 |
+
- bnb_4bit_compute_dtype: float32
|
47 |
+
- bnb_4bit_quant_storage: uint8
|
48 |
+
- load_in_4bit: False
|
49 |
+
- load_in_8bit: True
|
50 |
+
### Training hyperparameters
|
51 |
+
|
52 |
+
The following hyperparameters were used during training:
|
53 |
+
- learning_rate: 0.0003
|
54 |
+
- train_batch_size: 32
|
55 |
+
- eval_batch_size: 8
|
56 |
+
- seed: 42
|
57 |
+
- gradient_accumulation_steps: 4
|
58 |
+
- total_train_batch_size: 128
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_steps: 100
|
62 |
+
- training_steps: 400
|
63 |
+
- mixed_precision_training: Native AMP
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
68 |
+
|:-------------:|:------:|:----:|:---------------:|
|
69 |
+
| 2.1992 | 0.0465 | 20 | 2.0335 |
|
70 |
+
| 1.14 | 0.0931 | 40 | 0.8371 |
|
71 |
+
| 0.8045 | 0.1396 | 60 | 0.6549 |
|
72 |
+
| 0.584 | 0.1862 | 80 | 0.5715 |
|
73 |
+
| 0.3807 | 0.2327 | 100 | 0.5561 |
|
74 |
+
| 0.5723 | 0.2792 | 120 | 0.5147 |
|
75 |
+
| 0.4262 | 0.3258 | 140 | 0.5056 |
|
76 |
+
| 0.6375 | 0.3723 | 160 | 0.5191 |
|
77 |
+
| 0.4839 | 0.4188 | 180 | 0.4865 |
|
78 |
+
| 0.3596 | 0.4654 | 200 | 0.4994 |
|
79 |
+
| 0.5285 | 0.5119 | 220 | 0.4803 |
|
80 |
+
| 0.4035 | 0.5585 | 240 | 0.4753 |
|
81 |
+
| 0.6019 | 0.6050 | 260 | 0.4772 |
|
82 |
+
| 0.4663 | 0.6515 | 280 | 0.4670 |
|
83 |
+
| 0.345 | 0.6981 | 300 | 0.4746 |
|
84 |
+
| 0.509 | 0.7446 | 320 | 0.4652 |
|
85 |
+
| 0.3946 | 0.7912 | 340 | 0.4614 |
|
86 |
+
| 0.5714 | 0.8377 | 360 | 0.4614 |
|
87 |
+
| 0.4525 | 0.8842 | 380 | 0.4585 |
|
88 |
+
| 0.3432 | 0.9308 | 400 | 0.4576 |
|
89 |
+
|
90 |
+
|
91 |
+
### Framework versions
|
92 |
+
|
93 |
+
- PEFT 0.6.0.dev0
|
94 |
+
- Transformers 4.44.0.dev0
|
95 |
+
- Pytorch 2.2.2+cu121
|
96 |
+
- Datasets 2.19.1
|
97 |
+
- Tokenizers 0.19.1
|