--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: V0508HMA15HPHI3B2 results: [] --- # V0508HMA15HPHI3B2 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0885 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3691 | 0.09 | 10 | 0.1863 | | 0.1586 | 0.18 | 20 | 0.1406 | | 0.1444 | 0.27 | 30 | 0.1391 | | 0.1366 | 0.36 | 40 | 0.1237 | | 0.1228 | 0.45 | 50 | 0.1353 | | 0.1212 | 0.54 | 60 | 0.0898 | | 0.1116 | 0.63 | 70 | 0.1008 | | 0.0983 | 0.73 | 80 | 0.0803 | | 0.0756 | 0.82 | 90 | 0.0930 | | 0.0848 | 0.91 | 100 | 0.0721 | | 0.073 | 1.0 | 110 | 0.0729 | | 0.0499 | 1.09 | 120 | 0.0691 | | 0.0594 | 1.18 | 130 | 0.1105 | | 0.067 | 1.27 | 140 | 0.0751 | | 0.0489 | 1.36 | 150 | 0.0821 | | 0.0622 | 1.45 | 160 | 0.0838 | | 0.0654 | 1.54 | 170 | 0.0764 | | 0.0574 | 1.63 | 180 | 0.0826 | | 0.0562 | 1.72 | 190 | 0.0757 | | 0.0608 | 1.81 | 200 | 0.0795 | | 0.061 | 1.9 | 210 | 0.0796 | | 0.0552 | 1.99 | 220 | 0.0796 | | 0.0293 | 2.08 | 230 | 0.0849 | | 0.0219 | 2.18 | 240 | 0.1143 | | 0.0257 | 2.27 | 250 | 0.0967 | | 0.0204 | 2.36 | 260 | 0.0831 | | 0.0251 | 2.45 | 270 | 0.0882 | | 0.0182 | 2.54 | 280 | 0.0959 | | 0.0189 | 2.63 | 290 | 0.0925 | | 0.0243 | 2.72 | 300 | 0.0909 | | 0.0226 | 2.81 | 310 | 0.0890 | | 0.017 | 2.9 | 320 | 0.0884 | | 0.0201 | 2.99 | 330 | 0.0885 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.14.1