--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0511B1 results: [] --- # Phi0511B1 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.1765 | 0.09 | 10 | 4.1064 | | 2.6213 | 0.18 | 20 | 0.8942 | | 0.4793 | 0.27 | 30 | 0.1858 | | 0.1596 | 0.36 | 40 | 0.1426 | | 0.1372 | 0.45 | 50 | 0.1380 | | 0.1401 | 0.54 | 60 | 0.1201 | | 0.1139 | 0.63 | 70 | 0.1011 | | 0.0995 | 0.73 | 80 | 0.0856 | | 0.075 | 0.82 | 90 | 0.0778 | | 0.078 | 0.91 | 100 | 0.0724 | | 0.0685 | 1.0 | 110 | 0.0689 | | 0.0577 | 1.09 | 120 | 0.0669 | | 0.0531 | 1.18 | 130 | 0.0692 | | 0.0622 | 1.27 | 140 | 0.0650 | | 0.0561 | 1.36 | 150 | 0.0643 | | 0.0595 | 1.45 | 160 | 0.0632 | | 0.0555 | 1.54 | 170 | 0.0630 | | 0.0549 | 1.63 | 180 | 0.0620 | | 0.052 | 1.72 | 190 | 0.0627 | | 0.0577 | 1.81 | 200 | 0.0595 | | 0.0451 | 1.9 | 210 | 0.0612 | | 0.0513 | 1.99 | 220 | 0.0626 | | 0.0377 | 2.08 | 230 | 0.0629 | | 0.0412 | 2.18 | 240 | 0.0663 | | 0.0321 | 2.27 | 250 | 0.0701 | | 0.034 | 2.36 | 260 | 0.0720 | | 0.0366 | 2.45 | 270 | 0.0718 | | 0.0323 | 2.54 | 280 | 0.0707 | | 0.0337 | 2.63 | 290 | 0.0703 | | 0.0371 | 2.72 | 300 | 0.0699 | | 0.0417 | 2.81 | 310 | 0.0692 | | 0.0383 | 2.9 | 320 | 0.0690 | | 0.0346 | 2.99 | 330 | 0.0690 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0