--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA8 results: [] --- # Phi0503HMA8 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1630 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.6142 | 0.09 | 10 | 1.3143 | | 0.5476 | 0.18 | 20 | 0.2468 | | 0.3629 | 0.27 | 30 | 0.2346 | | 0.2414 | 0.36 | 40 | 0.2269 | | 0.2169 | 0.45 | 50 | 0.1917 | | 0.1925 | 0.54 | 60 | 0.1844 | | 0.1977 | 0.63 | 70 | 0.1833 | | 0.1755 | 0.73 | 80 | 0.1650 | | 0.1689 | 0.82 | 90 | 0.1627 | | 0.1552 | 0.91 | 100 | 0.7844 | | 0.2892 | 1.0 | 110 | 0.1149 | | 1.1144 | 1.09 | 120 | 0.1357 | | 0.1033 | 1.18 | 130 | 0.0829 | | 0.098 | 1.27 | 140 | 0.0898 | | 0.0863 | 1.36 | 150 | 0.0845 | | 0.0913 | 1.45 | 160 | 0.0791 | | 0.0782 | 1.54 | 170 | 0.0708 | | 0.0804 | 1.63 | 180 | 0.0786 | | 0.089 | 1.72 | 190 | 0.2288 | | 0.3087 | 1.81 | 200 | 0.1845 | | 0.449 | 1.9 | 210 | 0.3669 | | 0.7395 | 1.99 | 220 | 0.3523 | | 0.5132 | 2.08 | 230 | 0.1956 | | 0.1939 | 2.18 | 240 | 0.1647 | | 0.1612 | 2.27 | 250 | 0.1673 | | 0.1638 | 2.36 | 260 | 0.1636 | | 0.1617 | 2.45 | 270 | 0.1634 | | 0.1617 | 2.54 | 280 | 0.1640 | | 0.1626 | 2.63 | 290 | 0.1641 | | 0.1635 | 2.72 | 300 | 0.1634 | | 0.1638 | 2.81 | 310 | 0.1632 | | 0.162 | 2.9 | 320 | 0.1630 | | 0.1659 | 2.99 | 330 | 0.1630 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0