--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA6 results: [] --- # Phi0503HMA6 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.2469 | 0.09 | 10 | 0.9109 | | 0.4285 | 0.18 | 20 | 0.2506 | | 0.266 | 0.27 | 30 | 0.2427 | | 0.2313 | 0.36 | 40 | 0.2118 | | 0.1808 | 0.45 | 50 | 0.1604 | | 0.163 | 0.54 | 60 | 0.1760 | | 0.2571 | 0.63 | 70 | 0.1448 | | 0.2789 | 0.73 | 80 | 0.1488 | | 0.7096 | 0.82 | 90 | 1.2197 | | 1.051 | 0.91 | 100 | 1.2133 | | 0.4623 | 1.0 | 110 | 4.9980 | | 4.8479 | 1.09 | 120 | 2.3085 | | 1.6873 | 1.18 | 130 | 0.7471 | | 0.5896 | 1.27 | 140 | 0.3693 | | 0.334 | 1.36 | 150 | 0.2707 | | 0.2556 | 1.45 | 160 | 0.2347 | | 0.2087 | 1.54 | 170 | 0.1840 | | 0.187 | 1.63 | 180 | 0.1858 | | 0.1833 | 1.72 | 190 | 0.1842 | | 0.1755 | 1.81 | 200 | 0.1787 | | 0.1772 | 1.9 | 210 | 0.1708 | | 0.1698 | 1.99 | 220 | 0.1714 | | 0.1723 | 2.08 | 230 | 0.1691 | | 0.1674 | 2.18 | 240 | 0.1693 | | 0.1682 | 2.27 | 250 | 0.1709 | | 0.1684 | 2.36 | 260 | 0.1702 | | 0.166 | 2.45 | 270 | 0.1681 | | 0.1651 | 2.54 | 280 | 0.1683 | | 0.1689 | 2.63 | 290 | 0.1688 | | 0.17 | 2.72 | 300 | 0.1675 | | 0.1696 | 2.81 | 310 | 0.1674 | | 0.1663 | 2.9 | 320 | 0.1670 | | 0.1712 | 2.99 | 330 | 0.1670 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0