--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA4 results: [] --- # Phi0503HMA4 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.3203 | 0.09 | 10 | 0.8287 | | 0.439 | 0.18 | 20 | 0.2584 | | 0.2853 | 0.27 | 30 | 0.2324 | | 0.3519 | 0.36 | 40 | 0.2819 | | 0.2642 | 0.45 | 50 | 1.2134 | | 3.7539 | 0.54 | 60 | 4.0368 | | 2.718 | 0.63 | 70 | 1.9987 | | 1.3059 | 0.73 | 80 | 0.5453 | | 0.534 | 0.82 | 90 | 0.4644 | | 0.3535 | 0.91 | 100 | 0.2428 | | 0.2618 | 1.0 | 110 | 0.2259 | | 0.2222 | 1.09 | 120 | 0.2072 | | 0.1939 | 1.18 | 130 | 0.1850 | | 0.2268 | 1.27 | 140 | 0.1876 | | 0.1966 | 1.36 | 150 | 0.1927 | | 0.1942 | 1.45 | 160 | 0.1838 | | 0.1937 | 1.54 | 170 | 0.1900 | | 0.1808 | 1.63 | 180 | 0.1781 | | 0.1785 | 1.72 | 190 | 0.1795 | | 0.1737 | 1.81 | 200 | 0.1694 | | 0.176 | 1.9 | 210 | 0.1708 | | 0.1648 | 1.99 | 220 | 0.1751 | | 0.1702 | 2.08 | 230 | 0.1576 | | 0.1576 | 2.18 | 240 | 0.1524 | | 0.1477 | 2.27 | 250 | 0.1389 | | 0.1333 | 2.36 | 260 | 0.1172 | | 0.1267 | 2.45 | 270 | 0.1126 | | 0.1128 | 2.54 | 280 | 0.1016 | | 0.1112 | 2.63 | 290 | 0.0995 | | 0.1032 | 2.72 | 300 | 0.0976 | | 0.1001 | 2.81 | 310 | 0.0971 | | 0.0996 | 2.9 | 320 | 0.0957 | | 0.0968 | 2.99 | 330 | 0.0958 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1