--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA26 results: [] --- # Phi0503HMA26 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.4865 | 0.09 | 10 | 0.8844 | | 0.3885 | 0.18 | 20 | 0.2386 | | 0.2667 | 0.27 | 30 | 0.2422 | | 0.2338 | 0.36 | 40 | 0.2291 | | 0.2321 | 0.45 | 50 | 0.2215 | | 0.226 | 0.54 | 60 | 0.2156 | | 0.2283 | 0.63 | 70 | 0.2006 | | 0.2115 | 0.73 | 80 | 0.2034 | | 0.1803 | 0.82 | 90 | 0.1707 | | 0.1687 | 0.91 | 100 | 0.2004 | | 0.1851 | 1.0 | 110 | 0.1699 | | 0.1641 | 1.09 | 120 | 0.1648 | | 0.1642 | 1.18 | 130 | 0.1666 | | 0.1748 | 1.27 | 140 | 0.1629 | | 0.1665 | 1.36 | 150 | 0.1627 | | 0.134 | 1.45 | 160 | 0.1023 | | 0.1085 | 1.54 | 170 | 0.0887 | | 0.0876 | 1.63 | 180 | 0.0784 | | 0.0749 | 1.72 | 190 | 0.0729 | | 0.0673 | 1.81 | 200 | 0.0721 | | 0.0687 | 1.9 | 210 | 0.0764 | | 0.0648 | 1.99 | 220 | 0.0698 | | 0.0477 | 2.08 | 230 | 0.0734 | | 0.0522 | 2.18 | 240 | 0.0681 | | 0.0437 | 2.27 | 250 | 0.0679 | | 0.0437 | 2.36 | 260 | 0.0661 | | 0.0497 | 2.45 | 270 | 0.0651 | | 0.0437 | 2.54 | 280 | 0.0651 | | 0.0433 | 2.63 | 290 | 0.0651 | | 0.0464 | 2.72 | 300 | 0.0649 | | 0.0558 | 2.81 | 310 | 0.0640 | | 0.0455 | 2.9 | 320 | 0.0635 | | 0.0469 | 2.99 | 330 | 0.0635 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0