--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA24 results: [] --- # Phi0503HMA24 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.9527 | 0.09 | 10 | 0.4517 | | 0.2973 | 0.18 | 20 | 0.2376 | | 0.2492 | 0.27 | 30 | 0.3797 | | 0.2204 | 0.36 | 40 | 0.1632 | | 0.1199 | 0.45 | 50 | 0.1100 | | 0.1216 | 0.54 | 60 | 0.0921 | | 0.0821 | 0.63 | 70 | 0.0914 | | 0.1329 | 0.73 | 80 | 0.3868 | | 0.3425 | 0.82 | 90 | 0.1646 | | 0.1313 | 0.91 | 100 | 0.0851 | | 0.0883 | 1.0 | 110 | 0.0778 | | 0.0649 | 1.09 | 120 | 0.0842 | | 0.078 | 1.18 | 130 | 0.0862 | | 0.0702 | 1.27 | 140 | 0.0741 | | 0.075 | 1.36 | 150 | 0.0816 | | 0.0812 | 1.45 | 160 | 0.0697 | | 0.0612 | 1.54 | 170 | 0.0692 | | 0.0611 | 1.63 | 180 | 0.0714 | | 0.0578 | 1.72 | 190 | 0.0709 | | 0.068 | 1.81 | 200 | 0.0684 | | 0.0604 | 1.9 | 210 | 0.0715 | | 0.0592 | 1.99 | 220 | 0.0698 | | 0.0325 | 2.08 | 230 | 0.0825 | | 0.0302 | 2.18 | 240 | 0.0940 | | 0.0252 | 2.27 | 250 | 0.0822 | | 0.0231 | 2.36 | 260 | 0.0770 | | 0.0318 | 2.45 | 270 | 0.0715 | | 0.0235 | 2.54 | 280 | 0.0717 | | 0.0236 | 2.63 | 290 | 0.0746 | | 0.0324 | 2.72 | 300 | 0.0733 | | 0.0283 | 2.81 | 310 | 0.0720 | | 0.0248 | 2.9 | 320 | 0.0721 | | 0.0266 | 2.99 | 330 | 0.0726 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0