--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA23 results: [] --- # Phi0503HMA23 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.2718 | 0.09 | 10 | 0.6833 | | 0.3393 | 0.18 | 20 | 0.2266 | | 0.2573 | 0.27 | 30 | 0.2267 | | 0.2236 | 0.36 | 40 | 0.2029 | | 0.2141 | 0.45 | 50 | 0.2326 | | 0.2251 | 0.54 | 60 | 0.2256 | | 0.1965 | 0.63 | 70 | 0.1851 | | 0.196 | 0.73 | 80 | 0.1693 | | 0.1665 | 0.82 | 90 | 0.1641 | | 0.1427 | 0.91 | 100 | 0.1232 | | 0.1133 | 1.0 | 110 | 0.0969 | | 0.0833 | 1.09 | 120 | 0.0825 | | 0.0777 | 1.18 | 130 | 0.1040 | | 0.4 | 1.27 | 140 | 0.0785 | | 0.0787 | 1.36 | 150 | 0.0768 | | 0.076 | 1.45 | 160 | 0.0766 | | 0.0712 | 1.54 | 170 | 0.0717 | | 0.0668 | 1.63 | 180 | 0.0696 | | 0.0668 | 1.72 | 190 | 0.0650 | | 0.0712 | 1.81 | 200 | 0.0673 | | 0.0649 | 1.9 | 210 | 0.0688 | | 0.0624 | 1.99 | 220 | 0.0643 | | 0.0338 | 2.08 | 230 | 0.0756 | | 0.0329 | 2.18 | 240 | 0.0983 | | 0.0312 | 2.27 | 250 | 0.0859 | | 0.031 | 2.36 | 260 | 0.0770 | | 0.0371 | 2.45 | 270 | 0.0734 | | 0.0303 | 2.54 | 280 | 0.0735 | | 0.0292 | 2.63 | 290 | 0.0740 | | 0.0352 | 2.72 | 300 | 0.0732 | | 0.0382 | 2.81 | 310 | 0.0725 | | 0.033 | 2.9 | 320 | 0.0719 | | 0.0313 | 2.99 | 330 | 0.0717 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0