--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA18 results: [] --- # Phi0503HMA18 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 60 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.766 | 0.09 | 10 | 0.4613 | | 0.3024 | 0.18 | 20 | 0.2538 | | 0.2469 | 0.27 | 30 | 0.2178 | | 0.261 | 0.36 | 40 | 0.2338 | | 0.482 | 0.45 | 50 | 0.2783 | | 0.2062 | 0.54 | 60 | 0.1451 | | 0.1438 | 0.63 | 70 | 0.1608 | | 0.1457 | 0.73 | 80 | 0.1216 | | 0.103 | 0.82 | 90 | 0.1031 | | 0.1028 | 0.91 | 100 | 0.0730 | | 0.0779 | 1.0 | 110 | 0.0722 | | 0.0572 | 1.09 | 120 | 0.0660 | | 0.0543 | 1.18 | 130 | 0.0833 | | 0.0669 | 1.27 | 140 | 0.0697 | | 0.0573 | 1.36 | 150 | 0.0711 | | 0.0636 | 1.45 | 160 | 0.0659 | | 0.0579 | 1.54 | 170 | 0.0680 | | 0.0595 | 1.63 | 180 | 0.0651 | | 0.0541 | 1.72 | 190 | 0.0692 | | 0.0579 | 1.81 | 200 | 0.0626 | | 0.0487 | 1.9 | 210 | 0.0663 | | 0.0501 | 1.99 | 220 | 0.0655 | | 0.0269 | 2.08 | 230 | 0.0733 | | 0.0241 | 2.18 | 240 | 0.0912 | | 0.0172 | 2.27 | 250 | 0.1040 | | 0.0171 | 2.36 | 260 | 0.0972 | | 0.0242 | 2.45 | 270 | 0.0892 | | 0.0153 | 2.54 | 280 | 0.0907 | | 0.0193 | 2.63 | 290 | 0.0904 | | 0.0252 | 2.72 | 300 | 0.0876 | | 0.0245 | 2.81 | 310 | 0.0862 | | 0.0202 | 2.9 | 320 | 0.0857 | | 0.0207 | 2.99 | 330 | 0.0856 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0