--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA18 results: [] --- # Phi0503HMA18 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0803 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 60 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.9264 | 0.09 | 10 | 0.4060 | | 0.5196 | 0.18 | 20 | 2.6047 | | 0.5297 | 0.27 | 30 | 0.2263 | | 0.2143 | 0.36 | 40 | 0.1990 | | 0.2823 | 0.45 | 50 | 0.2488 | | 0.2513 | 0.54 | 60 | 0.1911 | | 0.1606 | 0.63 | 70 | 0.1463 | | 0.1446 | 0.73 | 80 | 0.1406 | | 0.1202 | 0.82 | 90 | 0.1288 | | 0.1229 | 0.91 | 100 | 0.1081 | | 0.1123 | 1.0 | 110 | 0.1439 | | 0.123 | 1.09 | 120 | 0.1062 | | 0.0765 | 1.18 | 130 | 0.0812 | | 0.0736 | 1.27 | 140 | 0.0723 | | 0.0629 | 1.36 | 150 | 0.0730 | | 0.0554 | 1.45 | 160 | 0.0738 | | 0.0532 | 1.54 | 170 | 0.0671 | | 0.0595 | 1.63 | 180 | 0.0657 | | 0.0594 | 1.72 | 190 | 0.0681 | | 0.0613 | 1.81 | 200 | 0.0624 | | 0.0488 | 1.9 | 210 | 0.0623 | | 0.0576 | 1.99 | 220 | 0.0607 | | 0.0284 | 2.08 | 230 | 0.0712 | | 0.0171 | 2.18 | 240 | 0.1021 | | 0.0287 | 2.27 | 250 | 0.0831 | | 0.0209 | 2.36 | 260 | 0.0753 | | 0.0229 | 2.45 | 270 | 0.0752 | | 0.0209 | 2.54 | 280 | 0.0759 | | 0.0206 | 2.63 | 290 | 0.0773 | | 0.0199 | 2.72 | 300 | 0.0788 | | 0.0162 | 2.81 | 310 | 0.0796 | | 0.0181 | 2.9 | 320 | 0.0802 | | 0.0213 | 2.99 | 330 | 0.0803 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0