--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA15 results: [] --- # Phi0503HMA15 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.2792 | 0.09 | 10 | 0.9013 | | 0.4134 | 0.18 | 20 | 0.2556 | | 0.2515 | 0.27 | 30 | 0.2349 | | 0.216 | 0.36 | 40 | 0.2240 | | 0.2069 | 0.45 | 50 | 0.1794 | | 0.2172 | 0.54 | 60 | 0.1495 | | 0.1601 | 0.63 | 70 | 0.1533 | | 0.1399 | 0.73 | 80 | 0.1102 | | 0.0989 | 0.82 | 90 | 0.0797 | | 0.0842 | 0.91 | 100 | 0.1293 | | 0.0738 | 1.0 | 110 | 0.0729 | | 0.0594 | 1.09 | 120 | 0.0661 | | 0.0593 | 1.18 | 130 | 0.0793 | | 0.0656 | 1.27 | 140 | 0.0695 | | 0.0607 | 1.36 | 150 | 0.0707 | | 0.0674 | 1.45 | 160 | 0.0698 | | 0.0647 | 1.54 | 170 | 0.0688 | | 0.0622 | 1.63 | 180 | 0.0681 | | 0.0539 | 1.72 | 190 | 0.0616 | | 0.0579 | 1.81 | 200 | 0.0621 | | 0.0503 | 1.9 | 210 | 0.0643 | | 0.052 | 1.99 | 220 | 0.0657 | | 0.0267 | 2.08 | 230 | 0.0803 | | 0.027 | 2.18 | 240 | 0.0948 | | 0.0216 | 2.27 | 250 | 0.0921 | | 0.0199 | 2.36 | 260 | 0.0846 | | 0.0273 | 2.45 | 270 | 0.0769 | | 0.0167 | 2.54 | 280 | 0.0791 | | 0.0213 | 2.63 | 290 | 0.0813 | | 0.027 | 2.72 | 300 | 0.0788 | | 0.023 | 2.81 | 310 | 0.0778 | | 0.0204 | 2.9 | 320 | 0.0779 | | 0.0212 | 2.99 | 330 | 0.0780 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0