--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA15 results: [] --- # Phi0503HMA15 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.4844 | 0.09 | 10 | 0.8736 | | 0.3931 | 0.18 | 20 | 0.2417 | | 0.2471 | 0.27 | 30 | 0.2360 | | 0.2276 | 0.36 | 40 | 0.2169 | | 0.2082 | 0.45 | 50 | 0.1854 | | 0.2197 | 0.54 | 60 | 0.2227 | | 0.2251 | 0.63 | 70 | 0.2017 | | 0.2114 | 0.73 | 80 | 0.2120 | | 0.2076 | 0.82 | 90 | 0.1874 | | 0.1868 | 0.91 | 100 | 0.1686 | | 0.1725 | 1.0 | 110 | 0.1657 | | 0.163 | 1.09 | 120 | 0.1645 | | 0.164 | 1.18 | 130 | 0.1647 | | 0.1737 | 1.27 | 140 | 0.1626 | | 0.1665 | 1.36 | 150 | 0.1629 | | 0.1662 | 1.45 | 160 | 0.1651 | | 0.1425 | 1.54 | 170 | 0.0893 | | 0.1374 | 1.63 | 180 | 0.0857 | | 0.129 | 1.72 | 190 | 0.1095 | | 0.0855 | 1.81 | 200 | 0.0848 | | 0.0678 | 1.9 | 210 | 0.0823 | | 0.0723 | 1.99 | 220 | 0.0818 | | 0.062 | 2.08 | 230 | 0.0671 | | 0.0583 | 2.18 | 240 | 0.0690 | | 0.0553 | 2.27 | 250 | 0.0685 | | 0.0511 | 2.36 | 260 | 0.0654 | | 0.0528 | 2.45 | 270 | 0.0659 | | 0.0493 | 2.54 | 280 | 0.0657 | | 0.0479 | 2.63 | 290 | 0.0650 | | 0.0483 | 2.72 | 300 | 0.0642 | | 0.0598 | 2.81 | 310 | 0.0628 | | 0.0528 | 2.9 | 320 | 0.0615 | | 0.0529 | 2.99 | 330 | 0.0616 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0