--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA13 results: [] --- # Phi0503HMA13 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1633 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.133 | 0.09 | 10 | 0.8411 | | 0.4299 | 0.18 | 20 | 0.2571 | | 0.3825 | 0.27 | 30 | 1.5358 | | 0.3674 | 0.36 | 40 | 0.1741 | | 0.1862 | 0.45 | 50 | 0.1464 | | 0.1476 | 0.54 | 60 | 0.1224 | | 0.1205 | 0.63 | 70 | 0.1300 | | 0.1212 | 0.73 | 80 | 0.1016 | | 0.0941 | 0.82 | 90 | 0.0955 | | 0.0865 | 0.91 | 100 | 0.0714 | | 0.1056 | 1.0 | 110 | 2.0855 | | 0.4121 | 1.09 | 120 | 0.1044 | | 0.5707 | 1.18 | 130 | 5.1159 | | 5.3396 | 1.27 | 140 | 4.3182 | | 2.1029 | 1.36 | 150 | 1.0791 | | 0.8112 | 1.45 | 160 | 0.4460 | | 0.3856 | 1.54 | 170 | 0.2762 | | 0.2282 | 1.63 | 180 | 0.2090 | | 0.1963 | 1.72 | 190 | 0.1821 | | 0.2054 | 1.81 | 200 | 0.1859 | | 0.1811 | 1.9 | 210 | 0.1716 | | 0.1663 | 1.99 | 220 | 0.1680 | | 0.1712 | 2.08 | 230 | 0.1657 | | 0.1649 | 2.18 | 240 | 0.1639 | | 0.1618 | 2.27 | 250 | 0.1671 | | 0.1654 | 2.36 | 260 | 0.1642 | | 0.1621 | 2.45 | 270 | 0.1639 | | 0.1626 | 2.54 | 280 | 0.1641 | | 0.1658 | 2.63 | 290 | 0.1640 | | 0.1657 | 2.72 | 300 | 0.1634 | | 0.1653 | 2.81 | 310 | 0.1635 | | 0.1625 | 2.9 | 320 | 0.1633 | | 0.1674 | 2.99 | 330 | 0.1633 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0