--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA12 results: [] --- # Phi0503HMA12 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.2962 | 0.09 | 10 | 0.8255 | | 0.3877 | 0.18 | 20 | 0.2353 | | 0.264 | 0.27 | 30 | 0.2552 | | 0.236 | 0.36 | 40 | 0.2439 | | 0.2233 | 0.45 | 50 | 0.2179 | | 0.211 | 0.54 | 60 | 0.2097 | | 0.1896 | 0.63 | 70 | 0.1825 | | 1.1817 | 0.73 | 80 | 3.3232 | | 4.4778 | 0.82 | 90 | 2.4034 | | 1.5484 | 0.91 | 100 | 0.7261 | | 0.5632 | 1.0 | 110 | 0.4332 | | 0.3744 | 1.09 | 120 | 0.5888 | | 0.3942 | 1.18 | 130 | 0.3256 | | 0.3126 | 1.27 | 140 | 0.2506 | | 0.2203 | 1.36 | 150 | 0.2069 | | 0.2076 | 1.45 | 160 | 0.1817 | | 0.1926 | 1.54 | 170 | 0.1959 | | 0.1984 | 1.63 | 180 | 0.1913 | | 0.1895 | 1.72 | 190 | 0.1800 | | 0.1813 | 1.81 | 200 | 0.1858 | | 0.184 | 1.9 | 210 | 0.1763 | | 0.1716 | 1.99 | 220 | 0.1732 | | 0.1728 | 2.08 | 230 | 0.1689 | | 0.1671 | 2.18 | 240 | 0.1650 | | 0.1618 | 2.27 | 250 | 0.1610 | | 0.1577 | 2.36 | 260 | 0.1565 | | 0.1506 | 2.45 | 270 | 0.1517 | | 0.153 | 2.54 | 280 | 0.1512 | | 0.1499 | 2.63 | 290 | 0.1512 | | 0.1485 | 2.72 | 300 | 0.1484 | | 0.1563 | 2.81 | 310 | 0.1477 | | 0.1499 | 2.9 | 320 | 0.1480 | | 0.148 | 2.99 | 330 | 0.1480 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0