--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA11 results: [] --- # Phi0503HMA11 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.8564 | 0.09 | 10 | 1.3605 | | 0.5497 | 0.18 | 20 | 0.2614 | | 0.2903 | 0.27 | 30 | 0.2683 | | 0.2461 | 0.36 | 40 | 0.2304 | | 0.2221 | 0.45 | 50 | 0.2068 | | 0.1477 | 0.54 | 60 | 0.1427 | | 0.1316 | 0.63 | 70 | 0.1772 | | 0.1198 | 0.73 | 80 | 0.0857 | | 0.0819 | 0.82 | 90 | 0.0997 | | 0.0985 | 0.91 | 100 | 0.0834 | | 3.0334 | 1.0 | 110 | 3.2368 | | 1.8691 | 1.09 | 120 | 0.8954 | | 0.565 | 1.18 | 130 | 0.3844 | | 0.4346 | 1.27 | 140 | 0.4378 | | 0.3277 | 1.36 | 150 | 0.2849 | | 0.2888 | 1.45 | 160 | 0.2455 | | 0.2336 | 1.54 | 170 | 0.2010 | | 0.2016 | 1.63 | 180 | 0.1956 | | 0.1855 | 1.72 | 190 | 0.1804 | | 0.1981 | 1.81 | 200 | 0.1913 | | 0.1829 | 1.9 | 210 | 0.1781 | | 0.1808 | 1.99 | 220 | 0.1771 | | 0.177 | 2.08 | 230 | 0.1778 | | 0.1753 | 2.18 | 240 | 0.1702 | | 0.1685 | 2.27 | 250 | 0.1727 | | 0.1671 | 2.36 | 260 | 0.1654 | | 0.1594 | 2.45 | 270 | 0.1603 | | 0.1581 | 2.54 | 280 | 0.1569 | | 0.1565 | 2.63 | 290 | 0.1536 | | 0.1546 | 2.72 | 300 | 0.1520 | | 0.1582 | 2.81 | 310 | 0.1518 | | 0.1512 | 2.9 | 320 | 0.1516 | | 0.1521 | 2.99 | 330 | 0.1516 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0