--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA1 results: [] --- # Phi0503HMA1 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.5767 | 0.09 | 10 | 1.3277 | | 0.528 | 0.18 | 20 | 0.2431 | | 0.272 | 0.27 | 30 | 0.2412 | | 0.4937 | 0.36 | 40 | 1.1132 | | 0.3726 | 0.45 | 50 | 0.2147 | | 0.2214 | 0.54 | 60 | 0.2026 | | 0.3024 | 0.63 | 70 | 0.1963 | | 0.2358 | 0.73 | 80 | 0.2236 | | 0.1673 | 0.82 | 90 | 0.1289 | | 0.1417 | 0.91 | 100 | 0.3550 | | 0.6614 | 1.0 | 110 | 0.2344 | | 0.2316 | 1.09 | 120 | 0.1982 | | 0.3203 | 1.18 | 130 | 0.1760 | | 0.2092 | 1.27 | 140 | 0.1681 | | 0.1788 | 1.36 | 150 | 0.1693 | | 0.8967 | 1.45 | 160 | 1.4252 | | 0.7768 | 1.54 | 170 | 0.1814 | | 0.1745 | 1.63 | 180 | 0.1690 | | 0.1651 | 1.72 | 190 | 0.1664 | | 0.1648 | 1.81 | 200 | 0.1655 | | 0.1678 | 1.9 | 210 | 0.1649 | | 0.164 | 1.99 | 220 | 0.1642 | | 0.1646 | 2.08 | 230 | 0.1630 | | 0.1609 | 2.18 | 240 | 0.1630 | | 0.1601 | 2.27 | 250 | 0.1636 | | 0.1634 | 2.36 | 260 | 0.1642 | | 0.1616 | 2.45 | 270 | 0.1640 | | 0.1619 | 2.54 | 280 | 0.1642 | | 0.1624 | 2.63 | 290 | 0.1642 | | 0.1634 | 2.72 | 300 | 0.1638 | | 0.1634 | 2.81 | 310 | 0.1635 | | 0.1619 | 2.9 | 320 | 0.1635 | | 0.1665 | 2.99 | 330 | 0.1635 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1