--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503B2 results: [] --- # Phi0503B2 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.4837 | 0.09 | 10 | 5.4342 | | 5.4537 | 0.18 | 20 | 5.2266 | | 4.774 | 0.27 | 30 | 3.6419 | | 2.4745 | 0.36 | 40 | 1.0488 | | 0.5621 | 0.45 | 50 | 0.2015 | | 0.1739 | 0.54 | 60 | 0.1465 | | 0.1373 | 0.63 | 70 | 0.1350 | | 0.1328 | 0.73 | 80 | 0.1258 | | 0.1091 | 0.82 | 90 | 0.1152 | | 0.1142 | 0.91 | 100 | 0.0968 | | 0.0918 | 1.0 | 110 | 0.1021 | | 0.0773 | 1.09 | 120 | 0.0807 | | 0.0711 | 1.18 | 130 | 0.0793 | | 0.0751 | 1.27 | 140 | 0.0661 | | 0.06 | 1.36 | 150 | 0.0651 | | 0.0647 | 1.45 | 160 | 0.0658 | | 0.0577 | 1.54 | 170 | 0.0657 | | 0.0575 | 1.63 | 180 | 0.0644 | | 0.0534 | 1.72 | 190 | 0.0661 | | 0.0594 | 1.81 | 200 | 0.0622 | | 0.0473 | 1.9 | 210 | 0.0628 | | 0.0522 | 1.99 | 220 | 0.0643 | | 0.0402 | 2.08 | 230 | 0.0644 | | 0.0436 | 2.18 | 240 | 0.0674 | | 0.0343 | 2.27 | 250 | 0.0708 | | 0.0358 | 2.36 | 260 | 0.0724 | | 0.0411 | 2.45 | 270 | 0.0720 | | 0.0359 | 2.54 | 280 | 0.0706 | | 0.0366 | 2.63 | 290 | 0.0702 | | 0.0397 | 2.72 | 300 | 0.0697 | | 0.044 | 2.81 | 310 | 0.0692 | | 0.0415 | 2.9 | 320 | 0.0688 | | 0.037 | 2.99 | 330 | 0.0690 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1