--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: PHI30515HMA2H results: [] --- # PHI30515HMA2H This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.2249 | 0.09 | 10 | 2.2001 | | 1.4719 | 0.18 | 20 | 0.3359 | | 0.3692 | 0.27 | 30 | 0.2930 | | 0.7802 | 0.36 | 40 | 0.2417 | | 0.3078 | 0.45 | 50 | 0.2185 | | 0.4702 | 0.54 | 60 | 0.2195 | | 0.272 | 0.63 | 70 | 0.1992 | | 0.2656 | 0.73 | 80 | 0.1711 | | 0.1386 | 0.82 | 90 | 0.1117 | | 0.2291 | 0.91 | 100 | 0.1116 | | 0.1424 | 1.0 | 110 | 0.0853 | | 0.099 | 1.09 | 120 | 0.1146 | | 0.1629 | 1.18 | 130 | 0.1753 | | 0.6955 | 1.27 | 140 | 0.1667 | | 0.226 | 1.36 | 150 | 0.1119 | | 0.1085 | 1.45 | 160 | 0.0805 | | 0.1083 | 1.54 | 170 | 0.0743 | | 0.2197 | 1.63 | 180 | 0.9735 | | 0.4915 | 1.72 | 190 | 0.0757 | | 0.0954 | 1.81 | 200 | 0.0794 | | 0.0696 | 1.9 | 210 | 0.0698 | | 0.068 | 1.99 | 220 | 0.0711 | | 0.0602 | 2.08 | 230 | 0.0702 | | 0.0896 | 2.18 | 240 | 0.0871 | | 0.0724 | 2.27 | 250 | 0.0720 | | 0.0679 | 2.36 | 260 | 0.0688 | | 0.0764 | 2.45 | 270 | 0.0683 | | 0.0642 | 2.54 | 280 | 0.0665 | | 0.058 | 2.63 | 290 | 0.0659 | | 0.0554 | 2.72 | 300 | 0.0665 | | 0.0699 | 2.81 | 310 | 0.0654 | | 0.0752 | 2.9 | 320 | 0.0645 | | 0.0654 | 2.99 | 330 | 0.0643 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0