--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: PHI30512HMAB6H results: [] --- # PHI30512HMAB6H This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.4764 | 0.09 | 10 | 1.7039 | | 0.6874 | 0.18 | 20 | 0.4076 | | 0.3403 | 0.27 | 30 | 0.2637 | | 0.2668 | 0.36 | 40 | 0.2667 | | 0.8232 | 0.45 | 50 | 3.1025 | | 0.8435 | 0.54 | 60 | 0.2217 | | 0.2786 | 0.63 | 70 | 0.2215 | | 0.2253 | 0.73 | 80 | 0.2019 | | 0.1871 | 0.82 | 90 | 0.1830 | | 0.1871 | 0.91 | 100 | 0.1695 | | 0.2185 | 1.0 | 110 | 0.2040 | | 0.1712 | 1.09 | 120 | 0.1659 | | 0.4398 | 1.18 | 130 | 0.2223 | | 1.8534 | 1.27 | 140 | 2.5467 | | 1.547 | 1.36 | 150 | 0.7915 | | 0.6568 | 1.45 | 160 | 0.4273 | | 0.3954 | 1.54 | 170 | 0.4106 | | 0.3571 | 1.63 | 180 | 0.3610 | | 0.2652 | 1.72 | 190 | 0.1875 | | 0.207 | 1.81 | 200 | 0.1718 | | 0.1613 | 1.9 | 210 | 0.1431 | | 0.1411 | 1.99 | 220 | 0.1365 | | 0.1256 | 2.08 | 230 | 0.1349 | | 0.1252 | 2.18 | 240 | 0.1040 | | 0.1131 | 2.27 | 250 | 0.0991 | | 0.1023 | 2.36 | 260 | 0.0855 | | 0.0836 | 2.45 | 270 | 0.0725 | | 0.082 | 2.54 | 280 | 0.0696 | | 0.0906 | 2.63 | 290 | 0.0696 | | 0.075 | 2.72 | 300 | 0.0694 | | 0.0766 | 2.81 | 310 | 0.0683 | | 0.0741 | 2.9 | 320 | 0.0700 | | 0.0664 | 2.99 | 330 | 0.0698 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0