--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: PHI30512HMAB26H results: [] --- # PHI30512HMAB26H This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.8606 | 0.09 | 10 | 1.2529 | | 0.634 | 0.18 | 20 | 0.2571 | | 0.2918 | 0.27 | 30 | 0.2613 | | 0.26 | 0.36 | 40 | 0.2799 | | 0.2618 | 0.45 | 50 | 0.2381 | | 0.2224 | 0.54 | 60 | 0.2114 | | 0.2238 | 0.63 | 70 | 0.2278 | | 0.2084 | 0.73 | 80 | 0.1813 | | 0.1347 | 0.82 | 90 | 0.1057 | | 0.0992 | 0.91 | 100 | 0.1193 | | 0.0989 | 1.0 | 110 | 0.0853 | | 0.0869 | 1.09 | 120 | 0.0838 | | 0.0762 | 1.18 | 130 | 0.0755 | | 0.0791 | 1.27 | 140 | 0.0743 | | 0.0777 | 1.36 | 150 | 0.0775 | | 0.0797 | 1.45 | 160 | 0.0712 | | 0.0729 | 1.54 | 170 | 0.0685 | | 0.0705 | 1.63 | 180 | 0.0706 | | 0.0672 | 1.72 | 190 | 0.0751 | | 0.0734 | 1.81 | 200 | 0.0688 | | 0.0646 | 1.9 | 210 | 0.0709 | | 0.0596 | 1.99 | 220 | 0.0763 | | 0.0421 | 2.08 | 230 | 0.0864 | | 0.0425 | 2.18 | 240 | 0.0845 | | 0.0358 | 2.27 | 250 | 0.0775 | | 0.0343 | 2.36 | 260 | 0.0763 | | 0.0449 | 2.45 | 270 | 0.0717 | | 0.0323 | 2.54 | 280 | 0.0723 | | 0.0319 | 2.63 | 290 | 0.0724 | | 0.0369 | 2.72 | 300 | 0.0727 | | 0.0402 | 2.81 | 310 | 0.0717 | | 0.0358 | 2.9 | 320 | 0.0713 | | 0.0369 | 2.99 | 330 | 0.0713 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0