--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: PHI30512HMAB24H results: [] --- # PHI30512HMAB24H This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.7682 | 0.09 | 10 | 1.1976 | | 0.5956 | 0.18 | 20 | 0.2488 | | 0.3055 | 0.27 | 30 | 0.2493 | | 0.2386 | 0.36 | 40 | 0.2397 | | 0.2408 | 0.45 | 50 | 0.2257 | | 0.2121 | 0.54 | 60 | 1.7294 | | 0.7562 | 0.63 | 70 | 0.1616 | | 0.1541 | 0.73 | 80 | 0.1300 | | 0.2129 | 0.82 | 90 | 0.4410 | | 4.0055 | 0.91 | 100 | 0.2221 | | 0.1856 | 1.0 | 110 | 0.2544 | | 1.5657 | 1.09 | 120 | 6.5436 | | 4.5499 | 1.18 | 130 | 2.2041 | | 2.0579 | 1.27 | 140 | 1.1273 | | 1.0437 | 1.36 | 150 | 0.8327 | | 0.7015 | 1.45 | 160 | 0.4925 | | 0.5356 | 1.54 | 170 | 0.4550 | | 0.3779 | 1.63 | 180 | 0.3327 | | 0.3294 | 1.72 | 190 | 0.2671 | | 0.2727 | 1.81 | 200 | 0.2339 | | 0.2032 | 1.9 | 210 | 0.1869 | | 0.1883 | 1.99 | 220 | 0.1860 | | 0.1833 | 2.08 | 230 | 0.1784 | | 0.1791 | 2.18 | 240 | 0.1742 | | 0.1737 | 2.27 | 250 | 0.1759 | | 0.175 | 2.36 | 260 | 0.1742 | | 0.1724 | 2.45 | 270 | 0.1769 | | 0.1716 | 2.54 | 280 | 0.1694 | | 0.1721 | 2.63 | 290 | 0.1694 | | 0.1693 | 2.72 | 300 | 0.1669 | | 0.1706 | 2.81 | 310 | 0.1668 | | 0.1638 | 2.9 | 320 | 0.1649 | | 0.167 | 2.99 | 330 | 0.1648 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0