File size: 3,050 Bytes
5da16b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: gemma
base_model: google/gemma-2b
tags:
- generated_from_trainer
model-index:
- name: G0521HMA26H3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# G0521HMA26H3
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1116
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7533 | 0.09 | 10 | 1.3694 |
| 1.0332 | 0.18 | 20 | 0.5170 |
| 0.3393 | 0.27 | 30 | 0.1684 |
| 0.1539 | 0.36 | 40 | 0.1588 |
| 0.1472 | 0.45 | 50 | 0.1883 |
| 0.1478 | 0.54 | 60 | 0.1928 |
| 0.1446 | 0.63 | 70 | 0.1654 |
| 0.1449 | 0.73 | 80 | 0.1611 |
| 0.1354 | 0.82 | 90 | 0.1416 |
| 0.1272 | 0.91 | 100 | 0.1641 |
| 0.1286 | 1.0 | 110 | 0.1561 |
| 0.1189 | 1.09 | 120 | 0.1664 |
| 0.1125 | 1.18 | 130 | 0.1229 |
| 0.116 | 1.27 | 140 | 0.1370 |
| 0.1185 | 1.36 | 150 | 0.1270 |
| 0.1168 | 1.45 | 160 | 0.1343 |
| 0.1089 | 1.54 | 170 | 0.1347 |
| 0.1095 | 1.63 | 180 | 0.1379 |
| 0.1104 | 1.72 | 190 | 0.1308 |
| 0.1101 | 1.81 | 200 | 0.1568 |
| 0.1101 | 1.9 | 210 | 0.1091 |
| 0.1069 | 1.99 | 220 | 0.1196 |
| 0.0933 | 2.08 | 230 | 0.1193 |
| 0.0961 | 2.18 | 240 | 0.1171 |
| 0.091 | 2.27 | 250 | 0.1358 |
| 0.0906 | 2.36 | 260 | 0.1123 |
| 0.0914 | 2.45 | 270 | 0.1114 |
| 0.0833 | 2.54 | 280 | 0.1243 |
| 0.0827 | 2.63 | 290 | 0.1207 |
| 0.0836 | 2.72 | 300 | 0.1153 |
| 0.0858 | 2.81 | 310 | 0.1132 |
| 0.0874 | 2.9 | 320 | 0.1114 |
| 0.0926 | 2.99 | 330 | 0.1116 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
|