File size: 3,048 Bytes
58d339d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: gemma
base_model: google/gemma-2b
tags:
- generated_from_trainer
model-index:
- name: G0513HMA23H
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# G0513HMA23H

This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1173

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.1683        | 0.09  | 10   | 2.8078          |
| 2.4559        | 0.18  | 20   | 1.8951          |
| 1.4297        | 0.27  | 30   | 0.8930          |
| 0.5326        | 0.36  | 40   | 0.2172          |
| 0.183         | 0.45  | 50   | 0.1592          |
| 0.1534        | 0.54  | 60   | 0.1511          |
| 0.1503        | 0.63  | 70   | 0.1499          |
| 0.152         | 0.73  | 80   | 0.1491          |
| 0.1456        | 0.82  | 90   | 0.1486          |
| 0.1454        | 0.91  | 100  | 0.1488          |
| 0.1488        | 1.0   | 110  | 0.1487          |
| 0.1438        | 1.09  | 120  | 0.1488          |
| 0.1452        | 1.18  | 130  | 0.1469          |
| 0.1458        | 1.27  | 140  | 0.1464          |
| 0.1469        | 1.36  | 150  | 0.1460          |
| 0.1417        | 1.45  | 160  | 0.1469          |
| 0.1427        | 1.54  | 170  | 0.1461          |
| 0.1442        | 1.63  | 180  | 0.1428          |
| 0.1446        | 1.72  | 190  | 0.1451          |
| 0.1416        | 1.81  | 200  | 0.1389          |
| 0.1378        | 1.9   | 210  | 0.1361          |
| 0.135         | 1.99  | 220  | 0.1304          |
| 0.129         | 2.08  | 230  | 0.1272          |
| 0.1251        | 2.18  | 240  | 0.1241          |
| 0.1213        | 2.27  | 250  | 0.1241          |
| 0.1287        | 2.36  | 260  | 0.1219          |
| 0.1251        | 2.45  | 270  | 0.1222          |
| 0.1206        | 2.54  | 280  | 0.1200          |
| 0.1168        | 2.63  | 290  | 0.1182          |
| 0.1183        | 2.72  | 300  | 0.1179          |
| 0.1199        | 2.81  | 310  | 0.1175          |
| 0.1216        | 2.9   | 320  | 0.1173          |
| 0.1206        | 2.99  | 330  | 0.1173          |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0