基于中英文混合语料增量训练,词表扩充汉字。 训练细节和benchmark指标: https://github.com/CVI-SZU/Linly ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("Linly-AI/Chinese-LLaMA-2-7B-hf", device_map="cuda:0", torch_dtype=torch.float16, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("Linly-AI/Chinese-LLaMA-2-7B-hf", use_fast=False, trust_remote_code=True) prompt = "北京有什么好玩的地方?" prompt = f"### Instruction:{prompt.strip()} ### Response:" inputs = tokenizer(prompt, return_tensors="pt").to("cuda:0") generate_ids = model.generate(inputs.input_ids, do_sample=True, max_new_tokens=2048, top_k=10, top_p=0.85, temperature=1, repetition_penalty=1.15, eos_token_id=2, bos_token_id=1, pad_token_id=0) response = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] response = response.lstrip(prompt) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Linly-AI__Chinese-LLaMA-2-7B-hf) | Metric | Value | |-----------------------|---------------------------| | Avg. | 42.44 | | ARC (25-shot) | 48.04 | | HellaSwag (10-shot) | 73.25 | | MMLU (5-shot) | 35.04 | | TruthfulQA (0-shot) | 39.92 | | Winogrande (5-shot) | 70.17 | | GSM8K (5-shot) | 6.22 | | DROP (3-shot) | 24.46 |