import os import sys import torch import torch.nn as nn from torch.nn import functional as F from timm.models.layers import trunc_normal_ from functools import partial import math import numpy as np def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token: pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float) omega /= embed_dim / 2. omega = 1. / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb def interpolate_pos_embed(model, checkpoint_model): if 'pos_embed' in checkpoint_model: pos_embed_checkpoint = checkpoint_model['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.patch_embed.num_patches num_extra_tokens = model.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) checkpoint_model['pos_embed'] = new_pos_embed def get_abs_pos(abs_pos, tgt_size): # abs_pos: L, C # tgt_size: M # return: M, C src_size = int(math.sqrt(abs_pos.size(0))) tgt_size = int(math.sqrt(tgt_size)) dtype = abs_pos.dtype if src_size != tgt_size: return F.interpolate( abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2), size=(tgt_size, tgt_size), mode="bicubic", align_corners=False, ).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype) else: return abs_pos class Resampler(nn.Module): """ A 2D perceiver-resampler network with one cross attention layers by (grid_size**2) learnable queries and 2d sincos pos_emb Outputs: A tensor with the shape of (grid_size**2, embed_dim) """ def __init__( self, grid_size, embed_dim, num_heads, kv_dim=None, norm_layer=partial(nn.LayerNorm, eps=1e-6) ): super().__init__() self.num_queries = grid_size ** 2 self.embed_dim = embed_dim self.num_heads = num_heads self.pos_embed = nn.Parameter( torch.from_numpy(get_2d_sincos_pos_embed(embed_dim, grid_size)).float() ).requires_grad_(False) self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim)) trunc_normal_(self.query, std=.02) if kv_dim is not None and kv_dim != embed_dim: self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False) else: self.kv_proj = nn.Identity() self.attn = nn.MultiheadAttention(embed_dim, num_heads) self.ln_q = norm_layer(embed_dim) self.ln_kv = norm_layer(embed_dim) self.ln_post = norm_layer(embed_dim) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward(self, x, attn_mask=None): pos_embed = get_abs_pos(self.pos_embed, x.size(1)) x = self.kv_proj(x) x = self.ln_kv(x).permute(1, 0, 2) k = x.clone() k[1:] = x[1:] + pos_embed.unsqueeze(1) N = x.shape[1] q = self.ln_q(self.query) out = self.attn( self._repeat(q, N) + self.pos_embed.unsqueeze(1), k, x, attn_mask=attn_mask)[0] out = self.ln_post(out.permute(1, 0, 2)) return out def _repeat(self, query, N: int): return query.unsqueeze(1).repeat(1, N, 1) def create_resampler(num_query_token=32, vision_width=1408,): attn_pool = Resampler( grid_size=int(math.sqrt(num_query_token)), embed_dim=4096, num_heads=4096 // 128, kv_dim=vision_width, ) return attn_pool