ppo-LunarLander-v2 / config.json
Liea's picture
Upload PPO LunarLander-v2 trained agent
bf7e68c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eb611d3feb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eb611d3ff40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eb611d40040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eb611d400d0>", "_build": "<function ActorCriticPolicy._build at 0x7eb611d40160>", "forward": "<function ActorCriticPolicy.forward at 0x7eb611d401f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eb611d40280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eb611d40310>", "_predict": "<function ActorCriticPolicy._predict at 0x7eb611d403a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eb611d40430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eb611d404c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eb611d40550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eb611d3a700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2000896, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690760967195047687, "learning_rate": 0.00025, "tensorboard_log": "runs", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPhzjw0rLo/lZb5PkAcvT4tuAm8B0A1PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE5yaEzwc6MAWyUTSkBjAF0lEdAqanjdi2Dx3V9lChoBkdAcLaQ4S6DoWgHTWYCaAhHQKmrrH0btJF1fZQoaAZHQHA85qqOtGNoB00vAWgIR0CprI2QwK0EdX2UKGgGR0BwmMdaMaS+aAdNDQFoCEdAqa1WLrHEM3V9lChoBkdAYZkcaOxSpGgHTegDaAhHQKmw55nlGPR1fZQoaAZHQHGpOTvAoG9oB00qAWgIR0Cpsb7+T/yYdX2UKGgGR0BJiKwY+B6KaAdNAwFoCEdAqbKB4QjD9HV9lChoBkdAYzejHGS6lWgHTegDaAhHQKm1dgn+hoN1fZQoaAZHQGzskug6EJ1oB00aAWgIR0Cptuw++ueSdX2UKGgGR0BwQg3++/QCaAdNEAFoCEdAqbe7amGdqnV9lChoBkdAcN7Wl/H5rWgHTRYBaAhHQKm4jJLdvbZ1fZQoaAZHQHBxctGus91oB00BAWgIR0CpuUvO6d1/dX2UKGgGR0BwAV94NZvDaAdNOAFoCEdAqbo0EcKgI3V9lChoBkdAYbf/rjYI0WgHTegDaAhHQKm9znV5KOF1fZQoaAZHQFPHkCmuTzNoB0v5aAhHQKm+wvcrRSh1fZQoaAZHQHDvaBZpztFoB00ZAWgIR0Cpv8M2FWXDdX2UKGgGR0Bw8Sr3j+72aAdNNwFoCEdAqcEB6+nIhnV9lChoBkdAZFd4xk/bCmgHTegDaAhHQKnEliOvMbF1fZQoaAZHQG7X/aHsTnJoB00VAWgIR0CpxV26kIomdX2UKGgGR0BxQKQ6p5u7aAdNAwFoCEdAqcYWFDfFaXV9lChoBkdAbiOEt/WlM2gHTUABaAhHQKnHBsYVIqd1fZQoaAZHQHE88B6rvLJoB00RAWgIR0Cpx8RFRYRvdX2UKGgGR0Bibc6o2n89aAdN6ANoCEdAqcs4SYgJTnV9lChoBkdAcRFme18b72gHTT4BaAhHQKnMHqzqrzZ1fZQoaAZHQHBrzjzZpSJoB00PAWgIR0CpzOJVS4vwdX2UKGgGR0BynTjuKGcnaAdNQAFoCEdAqc3PNu+AVnV9lChoBkdAb+8Tzundf2gHTVIBaAhHQKnOzaY/mkp1fZQoaAZHQHAn7mQr+YNoB00xAWgIR0Cpz6tQ0oBrdX2UKGgGR0Bwtkx59mYjaAdNBgFoCEdAqdBozFdcB3V9lChoBkdAbqcajvd/KGgHTQsBaAhHQKnR2qHXVb11fZQoaAZHQG/Bvu5SWJJoB01MAWgIR0Cp0tquKXOXdX2UKGgGR0BwgXFAE+xGaAdL+WgIR0Cp050mMOwxdX2UKGgGR0Bm+7T8YQ8PaAdN6ANoCEdAqdbtjLB9C3V9lChoBkdAby8dxyXD32gHTRoBaAhHQKnY+mReTmp1fZQoaAZHQHBe0I9kjHJoB00vAWgIR0Cp2ezEaVD8dX2UKGgGR0BzGa4e9zwMaAdNUwFoCEdAqdrf6Q/5cnV9lChoBkdAchmt9QXQ+mgHTTYBaAhHQKnbw2uxKQJ1fZQoaAZHQHCyLK/20zFoB00oAWgIR0Cp3JMglnh9dX2UKGgGR0BsyMtZmqYJaAdNNAFoCEdAqd168tf5UXV9lChoBkdAcZkzZYgaFWgHTUABaAhHQKneZR2r4nF1fZQoaAZHQHKyJ+QU5+9oB01HAWgIR0Cp3/oicG1QdX2UKGgGR0BwDJMAWBSUaAdNIwFoCEdAqeDZqVQhwHV9lChoBkdAbIPk8zQ/o2gHTSgBaAhHQKnhtTRYzSF1fZQoaAZHQHGcyAH3UQVoB01FAWgIR0Cp4qY95hScdX2UKGgGR0ByO/uhK15TaAdNQAFoCEdAqeOd7tzCDXV9lChoBkdAbZo+10DEFWgHTRoBaAhHQKnkZw0fozN1fZQoaAZHQHH7Brvb48FoB00vAWgIR0Cp5UWH1vl2dX2UKGgGR0BxzixUvPC3aAdNKgFoCEdAqebE3++/QHV9lChoBkdAcI+hbnoxH2gHTSYBaAhHQKnnoBEKE391fZQoaAZHQHCRX1J17ppoB00LAWgIR0Cp6GLIHTqjdX2UKGgGR0Bxc0uK4x1xaAdNLQFoCEdAqek9foicG3V9lChoBkdAcUUYTj/+9GgHTS8BaAhHQKnqGd4mkWR1fZQoaAZHQCWaCrcTJyRoB0vbaAhHQKnqt30wrUd1fZQoaAZHQHBPjWPLgXNoB00oAWgIR0Cp65d5prULdX2UKGgGR0BJLJxWDHwPaAdL6mgIR0Cp7OjUd7v5dX2UKGgGR0BFStnXd0q6aAdLxGgIR0Cp7ZQwj+rEdX2UKGgGR0Bx9rEit7rtaAdNUgFoCEdAqe7fT5O8CnV9lChoBkdAcQJRwZOzp2gHTT0BaAhHQKnwI1UlzEJ1fZQoaAZHQG5BlA/s3Q5oB01bAmgIR0Cp8iiVKPGRdX2UKGgGR0BvNA7V8Ti9aAdNDAFoCEdAqfLv9R77bnV9lChoBkdAcQKN34bjtGgHTScBaAhHQKn0aH1OCXh1fZQoaAZHQHK/ReXzDoBoB00vAWgIR0Cp9Uq6FuejdX2UKGgGR0BumJul41P4aAdNDgFoCEdAqfYUxoIv8XV9lChoBkdAQJ7FwT/Q0GgHS89oCEdAqfaq3kPtlnV9lChoBkdAcTdmXw9aEGgHTTQBaAhHQKn3jYHxBmh1fZQoaAZHQGUi9U0elsRoB03oA2gIR0Cp+xb3Gn4xdX2UKGgGR0BwQFAPd2xIaAdNIAFoCEdAqfvwa99MK3V9lChoBkdAYkN1AZ88cWgHTegDaAhHQKn+3pW3jMp1fZQoaAZHQG8fjMeOn2toB00LAWgIR0Cp/6MYMvytdX2UKGgGR0BwXk+bExZdaAdNDgFoCEdAqgBlhPTG53V9lChoBkdAb7uzk6tDD2gHTRoBaAhHQKoBz/Yrauh1fZQoaAZHQG8Pi6Ymb9ZoB01IAWgIR0CqAr6yrxRVdX2UKGgGR0A01T101ZTyaAdL1mgIR0CqA1eHSF4+dX2UKGgGR0A/hIoE0SAZaAdL82gIR0CqBA2CNCJGdX2UKGgGR0Bx16ESM98raAdNRAFoCEdAqgT4mkWRBHV9lChoBkdAcLsoS+QEIWgHTRABaAhHQKoGCicG1QZ1fZQoaAZHQGOXJAUtZmtoB03oA2gIR0CqCmzYukDZdX2UKGgGR0BxAjSpiqhlaAdNMQFoCEdAqgtUiD/VAnV9lChoBkdAcfJ961LJ0WgHTWIBaAhHQKoMYAQQL/l1fZQoaAZHQG3ayxZ+x4ZoB002AWgIR0CqDUdM9KVZdX2UKGgGR0BwzH9itq59aAdNLAFoCEdAqg4ojW07bXV9lChoBkdAcAL+717IDGgHTR0BaAhHQKoPplCkXUJ1fZQoaAZHQHA5i35N47loB00OAWgIR0CqEHiUX531dX2UKGgGR0BxQDtlZowmaAdNQQFoCEdAqhFn4yoGZHV9lChoBkdAcRLA3T/hl2gHTU0BaAhHQKoSXr9l2/11fZQoaAZHQHGGsw+MZP5oB005AWgIR0CqE0iKR+z/dX2UKGgGR0BwCAKKHfuUaAdNIgFoCEdAqhQqB7NSqHV9lChoBkdAcPwlCCz1LGgHTS8BaAhHQKoVDdDYywh1fZQoaAZHQHANE6tDD0loB00ZAWgIR0CqFolF2FFldX2UKGgGR0Bw2ik0rK/3aAdNXAFoCEdAqhePnSv1UXV9lChoBkdAcajUQTVUdmgHTQgBaAhHQKoYW5wwTM91fZQoaAZHQHAUWRvFWGRoB01OAWgIR0CqGVJhWo3rdX2UKGgGR0BjRlfzBhx6aAdN6ANoCEdAqhzZQtSQ5nV9lChoBkdAQmzupjtojGgHTQABaAhHQKod3bD/EO11fZQoaAZHQEh0zk6tDD1oB0veaAhHQKoewsGPgel1fZQoaAZHQG8uHFo+OfdoB00vAWgIR0CqIBWqkuYhdX2UKGgGR0Bxjaj1wo9caAdNJAFoCEdAqiEhC4SYgXV9lChoBkdAcb3k0Jng52gHTS4BaAhHQKoiBeNT9891fZQoaAZHQHC+kP6KtPpoB01WAWgIR0CqIwod2gWadX2UKGgGR0BxvmgsbvPUaAdNPwFoCEdAqiPtyvLX+XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0123, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}