File size: 2,434 Bytes
726dea9
 
 
 
 
 
 
 
 
 
 
 
 
 
1cd4d2a
726dea9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cd4d2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model:
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context
library_name: transformers
tags:
- mistral
- quantized
- text-generation-inference
- merge
- mergekit
pipeline_tag: text-generation
inference: false
---
# **GGUF-Imatrix quantizations for [Kunocchini-7b-128k-test](https://huggingface.co/Test157t/Kunocchini-7b-128k-test/).**

## *This has been my personal favourite and daily-driver role-play model for a while, so I decided to make new quantizations for it using the full F16-Imatrix data.*

SillyTavern preset files are located [here](https://huggingface.co/Test157t/Kunocchini-7b-128k-test/tree/main/ST%20presets).

*If you want any specific quantization to be added, feel free to ask.*

All credits belong to the [creator](https://huggingface.co/Test157t/).

`Base⇢ GGUF(F16)⇢ GGUF(Quants)`

The new **IQ3_S** merged today has shown to be better than the old Q3_K_S, so I added that instead of the later. Only supported in `koboldcpp-1.59` or higher.

Using [llama.cpp](https://github.com/ggerganov/llama.cpp/)-[b2254](https://github.com/ggerganov/llama.cpp/releases/tag/b2254).

For --imatrix data, `imatrix-Kunocchini-7b-128k-test-F16.dat` was used.

# Original model information:

Thanks to @Epiculous for the dope model/ help with llm backends and support overall.

Id like to also thank @kalomaze for the dope sampler additions to ST. 

@SanjiWatsuki Thank you very much for the help, and the model!

ST users can find the TextGenPreset in the folder labeled so.

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642265bc01c62c1e4102dc36/9obNSalcJqCilQwr_4ssM.jpeg)

The following models were included in the merge:
* [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B)
* [Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context](https://huggingface.co/Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
slices:
  - sources:
      - model: SanjiWatsuki/Kunoichi-DPO-v2-7B
        layer_range: [0, 32]
      - model: Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context
        layer_range: [0, 32]
merge_method: slerp
base_model: SanjiWatsuki/Kunoichi-DPO-v2-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```