File size: 3,505 Bytes
a9aa4d9
 
 
 
 
 
 
 
 
 
 
 
 
 
da388b1
 
a9aa4d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a9155
a9aa4d9
 
 
d04e14b
a9aa4d9
ae91d1a
a9aa4d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: other
tags:
- gguf
- quantized
- roleplay
- multimodal
- vision
- sillytavern
- merge
- mistral
---
This repository hosts GGUF-IQ-Imatrix quants for [ChaoticNeutrals/Eris_PrimeV3-Vision-7B](https://huggingface.co/ChaoticNeutrals/Eris_PrimeV3-Vision-7B).

This is a #multimodal model that also has vision capabilities. Read the full card information if that is your use case.

Quants:
```python
    quantization_options = [
        "Q4_K_M", "Q4_K_S", "IQ4_XS", "Q5_K_M", "Q5_K_S",
        "Q6_K", "Q8_0", "IQ3_M", "IQ3_S", "IQ3_XXS"
    ]
```

**What does "Imatrix" mean?**

It stands for **Importance Matrix**, a technique used to improve the quality of quantized models.
The **Imatrix** is calculated based on calibration data, and it helps determine the importance of different model activations during the quantization process.
The idea is to preserve the most important information during quantization, which can help reduce the loss of model performance, especially when the calibration data is diverse.
[[1]](https://github.com/ggerganov/llama.cpp/discussions/5006) [[2]](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384)

For imatrix data generation, kalomaze's `groups_merged.txt` with added roleplay chats was used, you can find it [here](https://huggingface.co/Lewdiculous/Datura_7B-GGUF-Imatrix/blob/main/imatrix-with-rp-format-data.txt). This was just to add a bit more diversity to the data.

# Vision/multimodal capabilities:

If you want to use vision functionality:

* Make sure you are using the latest version of [KoboldCpp](https://github.com/LostRuins/koboldcpp).

To use the multimodal capabilities of this model, such as **vision**, you also need to load the specified **mmproj** file, you can get it [here](https://huggingface.co/cjpais/llava-1.6-mistral-7b-gguf/blob/main/mmproj-model-f16.gguf).

* You can load the **mmproj** by using the corresponding section in the interface:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65d4cf2693a0a3744a27536c/UX6Ubss2EPNAT3SKGMLe0.png)

* For CLI users, you can load the **mmproj file** by adding the respective flag to your usual command:

```
--mmproj your-mmproj-file.gguf
```

# Quantization information:

**Steps performed:**

```
Base⇢ GGUF(F16)⇢ Imatrix-Data(F16)⇢ GGUF(Imatrix-Quants)
```
*Using the latest llama.cpp at the time.*

# Original model information:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/642265bc01c62c1e4102dc36/O6REGzkSHunCzXuxsSMn7.png)

Eris with vision capabilites supported by KCPP (required for vision support): https://huggingface.co/koboldcpp/mmproj/blob/main/mistral-7b-mmproj-v1.5-Q4_1.gguf

This model was merged using the SLERP merge method.

### Models Merged

The following models were included in the merge:
* [InferenceIllusionist/Excalibur-7b](https://huggingface.co/InferenceIllusionist/Excalibur-7b)
* [ChaoticNeutrals/Eris_Prime-V2-7B](https://huggingface.co/ChaoticNeutrals/Eris_Prime-V2-7B)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
slices:
  - sources:
      - model: ChaoticNeutrals/Eris_Prime-V2-7B
        layer_range: [0, 32]
      - model: InferenceIllusionist/Excalibur-7b
        layer_range: [0, 32]
merge_method: slerp
base_model: ChaoticNeutrals/Eris_Prime-V2-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```