--- base_model: - mistralai/Mistral-7B-Instruct-v0.2 - NousResearch/Hermes-2-Pro-Mistral-7B library_name: transformers tags: - mergekit - merge license: mit language: - en metrics: - bleu - code_eval - accuracy pipeline_tag: text-generation --- # LeroyDyer/Mixtral_BaseModel This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: mistralai/Mistral-7B-Instruct-v0.2 parameters: weight: 1.0 - model: NousResearch/Hermes-2-Pro-Mistral-7B parameters: weight: 0.3 merge_method: linear dtype: float16 ``` ``` python import transformers import torch from transformers import AutoTokenizer, MixtralForCausalLM device = "cuda" # the device to load the model onto model = "{{ username }}/{{ model_name }}" imodel = MixtralForCausalLM.from_pretrained(model) tokenizer = AutoTokenizer.from_pretrained(model) inputs = tokenizer(prompt, return_tensors="pt") # Generate generate_ids = imodel.generate(inputs.input_ids, max_length=30) tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] ```