--- datasets: - oscar-corpus/OSCAR-2301 - wikipedia - bjoernp/tagesschau-2018-2023 language: - en - de library_name: transformers pipeline_tag: text-generation --- # LAION LeoLM: **L**inguistically **E**nhanced **O**pen **L**anguage **M**odel Meet LeoLM, the first open and commercially available German Foundation Language Model built on Llama-2. Our models extend Llama-2's capabilities into German through continued pretraining on a large corpus of German-language and mostly locality specific text. Thanks to a compute grant at HessianAI's new supercomputer **42**, we release two foundation models trained with 8k context length, [`LeoLM/leo-hessianai-7b`](https://huggingface.co/LeoLM/leo-hessianai-7b) and [`LeoLM/leo-hessianai-13b`](https://huggingface.co/LeoLM/leo-hessianai-13b) under the [Llama-2 community license](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt) (70b also coming soon! 👀). With this release, we hope to bring a new wave of opportunities to German open-source and commercial LLM research and accelerate adoption. Read our [blog post]() or our paper (preprint coming soon) for more details! *A project by Björn Plüster and Christoph Schuhmann in collaboration with LAION and HessianAI.* ## Model Details - **Finetuned from:** [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) - **Model type:** Causal decoder-only transformer language model - **Language:** English and German - **License:** [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt) - **Contact:** [LAION Discord](https://discord.com/invite/eq3cAMZtCC) or [Björn Plüster](mailto:bjoern.pl@outlook.de) ## Use in 🤗Transformers First install direct dependencies: ``` pip install transformers torch sentencepiece ``` If you want faster inference using flash-attention2, you need to install these dependencies: ```bash pip install packaging ninja pip install flash-attn==v2.1.1 --no-build-isolation pip install git+https://github.com/HazyResearch/flash-attention.git@v2.1.1#subdirectory=csrc/rotary ``` Then load the model in transformers: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model = AutoModelForCausalLM.from_pretrained( model="LeoLM/leo-hessianai-13b", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True # True for flash-attn2 else False ) ``` ## Training parameters ![training_parameters](imgs/training_params.png "Training Hyperparameters") ## Benchmarks ![benchmarks](imgs/benchmarks.png "Benchmark Scores") # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_LeoLM__leo-hessianai-13b) | Metric | Value | |-----------------------|---------------------------| | Avg. | 45.97 | | ARC (25-shot) | 57.25 | | HellaSwag (10-shot) | 81.94 | | MMLU (5-shot) | 53.65 | | TruthfulQA (0-shot) | 38.03 | | Winogrande (5-shot) | 76.09 | | GSM8K (5-shot) | 8.95 | | DROP (3-shot) | 5.91 |