File size: 1,837 Bytes
80e9fa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe0074c
80e9fa3
 
fe0074c
 
80e9fa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: indo-t5-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# indo-t5-base

This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the lazarus-project/alkitab-sabda-mt dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5657
- Bleu: 18.7296
- Gen Len: 49.6657

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 4096
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 5000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu   | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| 1.5774        | 7.64  | 1000 | 1.5461          | 3.3312 | 18.8762 |
| 1.137         | 15.28 | 2000 | 1.4426          | 3.8148 | 18.8755 |
| 0.9109        | 22.92 | 3000 | 1.4754          | 3.9571 | 18.8752 |
| 0.7807        | 30.56 | 4000 | 1.5373          | 3.9767 | 18.8761 |
| 0.7288        | 38.2  | 5000 | 1.5657          | 3.9838 | 18.8778 |


### Framework versions

- Transformers 4.27.1
- Pytorch 2.0.0+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2