--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.73 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.3004 - Accuracy: 0.73 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.3007 | 0.97 | 7 | 2.2260 | 0.34 | | 2.2424 | 1.93 | 14 | 2.0328 | 0.39 | | 1.9803 | 2.9 | 21 | 1.8298 | 0.41 | | 1.8344 | 4.0 | 29 | 1.6637 | 0.52 | | 1.608 | 4.97 | 36 | 1.5523 | 0.58 | | 1.5644 | 5.93 | 43 | 1.4443 | 0.67 | | 1.4354 | 6.9 | 50 | 1.3870 | 0.7 | | 1.38 | 8.0 | 58 | 1.3434 | 0.69 | | 1.3521 | 8.97 | 65 | 1.3051 | 0.76 | | 1.3542 | 9.66 | 70 | 1.3004 | 0.73 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3