File size: 4,701 Bytes
6dc8421
 
 
 
 
 
9bbe313
6dc8421
 
 
 
 
 
 
 
 
9bbe313
 
 
 
 
6dc8421
 
 
9600573
6dc8421
 
 
 
 
 
 
9bbe313
6dc8421
9600573
 
6dc8421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bbe313
6dc8421
 
 
 
 
9600573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dc8421
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
model-index:
- name: my_awesome_mind_model
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: audiofolder
      type: audiofolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.589247311827957
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_mind_model

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3338
- Accuracy: 0.5892

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.7071        | 0.95  | 14   | 2.7063          | 0.0602   |
| 2.7033        | 1.97  | 29   | 2.7006          | 0.0645   |
| 2.6835        | 2.98  | 44   | 2.6793          | 0.0817   |
| 2.6551        | 4.0   | 59   | 2.5549          | 0.1699   |
| 2.5023        | 4.95  | 73   | 2.3970          | 0.2258   |
| 2.4257        | 5.97  | 88   | 2.3068          | 0.2495   |
| 2.2542        | 6.98  | 103  | 2.2121          | 0.2688   |
| 2.2419        | 8.0   | 118  | 2.1736          | 0.2731   |
| 2.1278        | 8.95  | 132  | 2.1675          | 0.2430   |
| 2.0592        | 9.97  | 147  | 2.1207          | 0.2796   |
| 1.9576        | 10.98 | 162  | 2.0662          | 0.2731   |
| 1.9023        | 12.0  | 177  | 1.9738          | 0.3312   |
| 1.8367        | 12.95 | 191  | 2.0420          | 0.2903   |
| 1.7822        | 13.97 | 206  | 2.0161          | 0.2860   |
| 1.6934        | 14.98 | 221  | 2.0215          | 0.2989   |
| 1.7093        | 16.0  | 236  | 1.9287          | 0.3290   |
| 1.6158        | 16.95 | 250  | 1.8138          | 0.3849   |
| 1.5879        | 17.97 | 265  | 1.8043          | 0.3871   |
| 1.5249        | 18.98 | 280  | 1.9117          | 0.3548   |
| 1.4821        | 20.0  | 295  | 1.7242          | 0.4215   |
| 1.4629        | 20.95 | 309  | 1.6981          | 0.4538   |
| 1.3847        | 21.97 | 324  | 1.6701          | 0.4516   |
| 1.3595        | 22.98 | 339  | 1.6891          | 0.4495   |
| 1.298         | 24.0  | 354  | 1.6321          | 0.4667   |
| 1.2479        | 24.95 | 368  | 1.5519          | 0.4989   |
| 1.2135        | 25.97 | 383  | 1.5477          | 0.4839   |
| 1.1833        | 26.98 | 398  | 1.5437          | 0.5032   |
| 1.1298        | 28.0  | 413  | 1.5425          | 0.5097   |
| 1.079         | 28.95 | 427  | 1.5076          | 0.5247   |
| 1.0709        | 29.97 | 442  | 1.5288          | 0.5140   |
| 1.0286        | 30.98 | 457  | 1.4497          | 0.5419   |
| 0.9896        | 32.0  | 472  | 1.4663          | 0.5355   |
| 0.9707        | 32.95 | 486  | 1.4683          | 0.5333   |
| 0.9443        | 33.97 | 501  | 1.4977          | 0.5226   |
| 0.8998        | 34.98 | 516  | 1.4178          | 0.5505   |
| 0.9048        | 36.0  | 531  | 1.4131          | 0.5462   |
| 0.8587        | 36.95 | 545  | 1.3791          | 0.5634   |
| 0.84          | 37.97 | 560  | 1.4036          | 0.5527   |
| 0.8155        | 38.98 | 575  | 1.4139          | 0.5505   |
| 0.8086        | 40.0  | 590  | 1.3993          | 0.5462   |
| 0.808         | 40.95 | 604  | 1.3325          | 0.5914   |
| 0.7929        | 41.97 | 619  | 1.3500          | 0.5806   |
| 0.7635        | 42.98 | 634  | 1.3471          | 0.5720   |
| 0.761         | 44.0  | 649  | 1.3636          | 0.5634   |
| 0.7456        | 44.95 | 663  | 1.3551          | 0.5828   |
| 0.75          | 45.97 | 678  | 1.3431          | 0.5849   |
| 0.7232        | 46.98 | 693  | 1.3338          | 0.5871   |
| 0.7625        | 47.46 | 700  | 1.3338          | 0.5892   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0