KoichiYasuoka commited on
Commit
9154021
1 Parent(s): 3e4f7bd

dependency-parsing

Browse files
Files changed (1) hide show
  1. README.md +8 -4
README.md CHANGED
@@ -7,6 +7,7 @@ tags:
7
  - "ancient chinese"
8
  - "token-classification"
9
  - "pos"
 
10
  datasets:
11
  - "universal_dependencies"
12
  license: "apache-2.0"
@@ -19,7 +20,7 @@ widget:
19
 
20
  ## Model Description
21
 
22
- This is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging, derived from [roberta-classical-chinese-large-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-large-char). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech).
23
 
24
  ## How to Use
25
 
@@ -28,9 +29,12 @@ import torch
28
  from transformers import AutoTokenizer,AutoModelForTokenClassification
29
  tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-upos")
30
  model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-upos")
31
- s="子曰學而時習之不亦説乎有朋自遠方來不亦樂乎人不知而不慍不亦君子乎"
32
- p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]]
33
- print(list(zip(s,p)))
 
 
 
34
  ```
35
 
36
  ## Reference
 
7
  - "ancient chinese"
8
  - "token-classification"
9
  - "pos"
10
+ - "dependency-parsing"
11
  datasets:
12
  - "universal_dependencies"
13
  license: "apache-2.0"
 
20
 
21
  ## Model Description
22
 
23
+ This is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing, derived from [roberta-classical-chinese-large-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-large-char). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech).
24
 
25
  ## How to Use
26
 
 
29
  from transformers import AutoTokenizer,AutoModelForTokenClassification
30
  tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-upos")
31
  model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-upos")
32
+ ```
33
+ or
34
+
35
+ ```py
36
+ import esupar
37
+ nlp=esupar.load("KoichiYasuoka/roberta-classical-chinese-large-upos")
38
  ```
39
 
40
  ## Reference