KnutJaegersberg
commited on
Commit
•
b3c0032
1
Parent(s):
ac691e9
Upload 91 files
Browse files- quip-sharp/README.md +3 -4
- quip-sharp/docs/index.html +51 -51
- quip-sharp/docs/index.md +8 -8
- quip-sharp/hfize_llama.py +27 -78
- quip-sharp/lib/__pycache__/__init__.cpython-310.pyc +0 -0
- quip-sharp/lib/codebook/__pycache__/__init__.cpython-310.pyc +0 -0
- quip-sharp/lib/codebook/__pycache__/half_integer_4bit_1col.cpython-310.pyc +0 -0
- quip-sharp/lib/codebook/__pycache__/latticed4.cpython-310.pyc +0 -0
- quip-sharp/lib/codebook/__pycache__/latticee8_padded12.cpython-310.pyc +0 -0
- quip-sharp/lib/codebook/latticee8_padded12.py +100 -129
- quip-sharp/lib/linear/__pycache__/__init__.cpython-310.pyc +0 -0
- quip-sharp/lib/linear/__pycache__/fused_quantized_linear.cpython-310.pyc +0 -0
- quip-sharp/lib/linear/__pycache__/quantized_linear.cpython-310.pyc +0 -0
- quip-sharp/lib/linear/fused_quantized_linear.py +22 -0
- quip-sharp/lib/linear/quantized_linear.py +25 -16
- quip-sharp/lib/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- quip-sharp/lib/utils/__pycache__/data_utils.cpython-310.pyc +0 -0
- quip-sharp/lib/utils/__pycache__/lm_eval_adaptor.cpython-310.pyc +0 -0
- quip-sharp/lib/utils/__pycache__/math_utils.cpython-310.pyc +0 -0
- quip-sharp/lib/utils/__pycache__/matmul_had.cpython-310.pyc +0 -0
- quip-sharp/lib/utils/__pycache__/matmul_kron.cpython-310.pyc +0 -0
- quip-sharp/lib/utils/__pycache__/misc.cpython-310.pyc +0 -0
- quip-sharp/lib/utils/__pycache__/unsafe_import.cpython-310.pyc +0 -0
- quip-sharp/lib/utils/data_utils.py +1 -1
- quip-sharp/lib/utils/unsafe_import.py +1 -3
- quip-sharp/model/__pycache__/graph_wrapper.cpython-310.pyc +0 -0
- quip-sharp/model/__pycache__/llama.cpython-310.pyc +0 -0
- quip-sharp/model/__pycache__/mistral.cpython-310.pyc +0 -0
- quip-sharp/model/__pycache__/version.cpython-310.pyc +0 -0
- quip-sharp/model/llama.py +25 -55
- quip-sharp/model/mistral.py +23 -54
- quip-sharp/model/version.py +2 -2
- quip-sharp/quantize_llama.py +3 -3
- quip-sharp/quiptools/build/lib.linux-x86_64-cpython-310/quiptools_cuda.cpython-310-x86_64-linux-gnu.so +2 -2
- quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/.ninja_deps +0 -0
- quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/.ninja_log +3 -5
- quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/quiptools.o +1 -1
- quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/quiptools_e8p_gemv.o +2 -2
- quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/quiptools_wrapper.o +2 -2
- quip-sharp/quiptools/dist/quiptools_cuda-0.0.0-py3.10-linux-x86_64.egg +2 -2
- quip-sharp/quiptools/quiptools_cuda.egg-info/SOURCES.txt +0 -5
- quip-sharp/quiptools/quiptools_e8p_gemv.cu +501 -227
- quip-sharp/quiptools/quiptools_wrapper.cpp +8 -3
- quip-sharp/scripts/upload_hf.py +1 -0
quip-sharp/README.md
CHANGED
@@ -10,7 +10,7 @@ We also provide a full codebase that allows users to quantize and deploy their o
|
|
10 |
| OPTQ | 3 bit | 4.577 | 6.838 | 0.544 | **0.786** |
|
11 |
| OPTQ | 2 bit | 109.820 | 62.692 | 0.253 | 0.505 |
|
12 |
| QuIP | 2 bit | 5.574 | 8.268 | 0.544 | 0.751 |
|
13 |
-
| **QuIP#** | **2 bit** | **4.
|
14 |
|
15 |
Quantization results on Llama 2 70B. QuIP# achieves near-native performance at 2 bits, outperforming all other presented baselines.
|
16 |
|
@@ -18,9 +18,8 @@ Quantization results on Llama 2 70B. QuIP# achieves near-native performance at 2
|
|
18 |
|
19 |
## News
|
20 |
|
21 |
-
- We
|
22 |
-
- We
|
23 |
-
- **The 4 bit models have been replaced by new bit-packed models that end with the `-Packed` suffix. The old models have been deprecated, removed, and do not work with the current code (and vice versa). Make sure to pull the latest code to run the 4 bit models.**
|
24 |
|
25 |
## Installation
|
26 |
|
|
|
10 |
| OPTQ | 3 bit | 4.577 | 6.838 | 0.544 | **0.786** |
|
11 |
| OPTQ | 2 bit | 109.820 | 62.692 | 0.253 | 0.505 |
|
12 |
| QuIP | 2 bit | 5.574 | 8.268 | 0.544 | 0.751 |
|
13 |
+
| **QuIP#** | **2 bit** | **4.159** | **6.529** | **0.595** | **0.786** |
|
14 |
|
15 |
Quantization results on Llama 2 70B. QuIP# achieves near-native performance at 2 bits, outperforming all other presented baselines.
|
16 |
|
|
|
18 |
|
19 |
## News
|
20 |
|
21 |
+
- We merged in a faster E8P kernel that (with CUDA graphs) is around twice as fast as before. Make sure to pull the latest code and models and recompile `quiptools` to get the faster kernel. As a reminder, `hf.generate()` does not work with CUDA graphs so the generation speed in `interactive_gen.py` is not representative of reality.
|
22 |
+
- We fixed a duplicated entry in the E8P codebook and updated the result tables.
|
|
|
23 |
|
24 |
## Installation
|
25 |
|
quip-sharp/docs/index.html
CHANGED
@@ -283,10 +283,10 @@ class="math inline">\(\uparrow\)</span></th>
|
|
283 |
<tr class="odd">
|
284 |
<td style="text-align: center;"><strong>QuIP#</strong></td>
|
285 |
<td style="text-align: center;"><strong>2 bit</strong></td>
|
286 |
-
<td style="text-align: center;"><strong>4.
|
287 |
-
<td style="text-align: center;"><strong>6.
|
288 |
<td style="text-align: center;"><strong>0.595</strong></td>
|
289 |
-
<td style="text-align: center;">0.
|
290 |
</tr>
|
291 |
</tbody>
|
292 |
</table>
|
@@ -688,13 +688,13 @@ class="math inline">\(\uparrow\)</span></th>
|
|
688 |
<tr class="even">
|
689 |
<td style="text-align: center;">2-70B</td>
|
690 |
<td style="text-align: center;">QuIP#</td>
|
691 |
-
<td style="text-align: center;">6.
|
692 |
-
<td style="text-align: center;">4.
|
693 |
-
<td style="text-align: center;">0.
|
694 |
<td style="text-align: center;">0.595</td>
|
695 |
-
<td style="text-align: center;">0.
|
696 |
-
<td style="text-align: center;">0.
|
697 |
-
<td style="text-align: center;">0.
|
698 |
</tr>
|
699 |
<tr class="odd">
|
700 |
<td style="text-align: center;">2-13B</td>
|
@@ -710,13 +710,13 @@ class="math inline">\(\uparrow\)</span></th>
|
|
710 |
<tr class="even">
|
711 |
<td style="text-align: center;">2-13B</td>
|
712 |
<td style="text-align: center;">QuIP#</td>
|
713 |
-
<td style="text-align: center;">8.
|
714 |
-
<td style="text-align: center;">6.
|
715 |
-
<td style="text-align: center;">0.
|
716 |
-
<td style="text-align: center;">0.
|
717 |
-
<td style="text-align: center;">0.
|
718 |
-
<td style="text-align: center;">0.
|
719 |
-
<td style="text-align: center;">0.
|
720 |
</tr>
|
721 |
<tr class="odd">
|
722 |
<td style="text-align: center;">2-7B</td>
|
@@ -732,13 +732,13 @@ class="math inline">\(\uparrow\)</span></th>
|
|
732 |
<tr class="even">
|
733 |
<td style="text-align: center;">2-7B</td>
|
734 |
<td style="text-align: center;">QuIP#</td>
|
735 |
-
<td style="text-align: center;">12.
|
736 |
-
<td style="text-align: center;">8.
|
737 |
-
<td style="text-align: center;">0.
|
738 |
-
<td style="text-align: center;">0.
|
739 |
-
<td style="text-align: center;">0.
|
740 |
-
<td style="text-align: center;">0.
|
741 |
-
<td style="text-align: center;">0.
|
742 |
</tr>
|
743 |
<tr class="odd">
|
744 |
<td style="text-align: center;">1-65b</td>
|
@@ -754,13 +754,13 @@ class="math inline">\(\uparrow\)</span></th>
|
|
754 |
<tr class="even">
|
755 |
<td style="text-align: center;">1-65b</td>
|
756 |
<td style="text-align: center;">QuIP#</td>
|
757 |
-
<td style="text-align: center;">6.
|
758 |
-
<td style="text-align: center;">4.
|
759 |
-
<td style="text-align: center;">0.
|
760 |
-
<td style="text-align: center;">0.
|
761 |
-
<td style="text-align: center;">0.
|
762 |
-
<td style="text-align: center;">0.
|
763 |
-
<td style="text-align: center;">0.
|
764 |
</tr>
|
765 |
<tr class="odd">
|
766 |
<td style="text-align: center;">1-30B</td>
|
@@ -776,13 +776,13 @@ class="math inline">\(\uparrow\)</span></th>
|
|
776 |
<tr class="even">
|
777 |
<td style="text-align: center;">1-30B</td>
|
778 |
<td style="text-align: center;">QuIP#</td>
|
779 |
-
<td style="text-align: center;">7.
|
780 |
-
<td style="text-align: center;">5.
|
781 |
-
<td style="text-align: center;">0.
|
782 |
-
<td style="text-align: center;">0.
|
783 |
-
<td style="text-align: center;">0.
|
784 |
-
<td style="text-align: center;">0.
|
785 |
-
<td style="text-align: center;">0.
|
786 |
</tr>
|
787 |
<tr class="odd">
|
788 |
<td style="text-align: center;">1-13B</td>
|
@@ -798,13 +798,13 @@ class="math inline">\(\uparrow\)</span></th>
|
|
798 |
<tr class="even">
|
799 |
<td style="text-align: center;">1-13B</td>
|
800 |
<td style="text-align: center;">QuIP#</td>
|
801 |
-
<td style="text-align: center;">8.
|
802 |
-
<td style="text-align: center;">6.
|
803 |
-
<td style="text-align: center;">0.
|
804 |
-
<td style="text-align: center;">0.
|
805 |
-
<td style="text-align: center;">0.
|
806 |
-
<td style="text-align: center;">0.
|
807 |
-
<td style="text-align: center;">0.
|
808 |
</tr>
|
809 |
<tr class="odd">
|
810 |
<td style="text-align: center;">1-7B</td>
|
@@ -820,13 +820,13 @@ class="math inline">\(\uparrow\)</span></th>
|
|
820 |
<tr class="even">
|
821 |
<td style="text-align: center;">1-7B</td>
|
822 |
<td style="text-align: center;">QuIP#</td>
|
823 |
-
<td style="text-align: center;">10.
|
824 |
-
<td style="text-align: center;">8.
|
825 |
-
<td style="text-align: center;">0.
|
826 |
-
<td style="text-align: center;">0.
|
827 |
-
<td style="text-align: center;">0.
|
828 |
-
<td style="text-align: center;">0.
|
829 |
-
<td style="text-align: center;">0.
|
830 |
</tr>
|
831 |
</tbody>
|
832 |
</table>
|
|
|
283 |
<tr class="odd">
|
284 |
<td style="text-align: center;"><strong>QuIP#</strong></td>
|
285 |
<td style="text-align: center;"><strong>2 bit</strong></td>
|
286 |
+
<td style="text-align: center;"><strong>4.159</strong></td>
|
287 |
+
<td style="text-align: center;"><strong>6.529</strong></td>
|
288 |
<td style="text-align: center;"><strong>0.595</strong></td>
|
289 |
+
<td style="text-align: center;">0.786</td>
|
290 |
</tr>
|
291 |
</tbody>
|
292 |
</table>
|
|
|
688 |
<tr class="even">
|
689 |
<td style="text-align: center;">2-70B</td>
|
690 |
<td style="text-align: center;">QuIP#</td>
|
691 |
+
<td style="text-align: center;">6.529</td>
|
692 |
+
<td style="text-align: center;">4.158</td>
|
693 |
+
<td style="text-align: center;">0.472</td>
|
694 |
<td style="text-align: center;">0.595</td>
|
695 |
+
<td style="text-align: center;">0.791</td>
|
696 |
+
<td style="text-align: center;">0.786</td>
|
697 |
+
<td style="text-align: center;">0.742</td>
|
698 |
</tr>
|
699 |
<tr class="odd">
|
700 |
<td style="text-align: center;">2-13B</td>
|
|
|
710 |
<tr class="even">
|
711 |
<td style="text-align: center;">2-13B</td>
|
712 |
<td style="text-align: center;">QuIP#</td>
|
713 |
+
<td style="text-align: center;">8.755</td>
|
714 |
+
<td style="text-align: center;">6.058</td>
|
715 |
+
<td style="text-align: center;">0.371</td>
|
716 |
+
<td style="text-align: center;">0.501</td>
|
717 |
+
<td style="text-align: center;">0.665</td>
|
718 |
+
<td style="text-align: center;">0.757</td>
|
719 |
+
<td style="text-align: center;">0.636</td>
|
720 |
</tr>
|
721 |
<tr class="odd">
|
722 |
<td style="text-align: center;">2-7B</td>
|
|
|
732 |
<tr class="even">
|
733 |
<td style="text-align: center;">2-7B</td>
|
734 |
<td style="text-align: center;">QuIP#</td>
|
735 |
+
<td style="text-align: center;">12.062</td>
|
736 |
+
<td style="text-align: center;">8.224</td>
|
737 |
+
<td style="text-align: center;">0.325</td>
|
738 |
+
<td style="text-align: center;">0.428</td>
|
739 |
+
<td style="text-align: center;">0.623</td>
|
740 |
+
<td style="text-align: center;">0.712</td>
|
741 |
+
<td style="text-align: center;">0.624</td>
|
742 |
</tr>
|
743 |
<tr class="odd">
|
744 |
<td style="text-align: center;">1-65b</td>
|
|
|
754 |
<tr class="even">
|
755 |
<td style="text-align: center;">1-65b</td>
|
756 |
<td style="text-align: center;">QuIP#</td>
|
757 |
+
<td style="text-align: center;">6.744</td>
|
758 |
+
<td style="text-align: center;">4.566</td>
|
759 |
+
<td style="text-align: center;">0.436</td>
|
760 |
+
<td style="text-align: center;">0.569</td>
|
761 |
+
<td style="text-align: center;">0.817</td>
|
762 |
+
<td style="text-align: center;">0.805</td>
|
763 |
+
<td style="text-align: center;">0.736</td>
|
764 |
</tr>
|
765 |
<tr class="odd">
|
766 |
<td style="text-align: center;">1-30B</td>
|
|
|
776 |
<tr class="even">
|
777 |
<td style="text-align: center;">1-30B</td>
|
778 |
<td style="text-align: center;">QuIP#</td>
|
779 |
+
<td style="text-align: center;">7.471</td>
|
780 |
+
<td style="text-align: center;">5.317</td>
|
781 |
+
<td style="text-align: center;">0.429</td>
|
782 |
+
<td style="text-align: center;">0.545</td>
|
783 |
+
<td style="text-align: center;">0.669</td>
|
784 |
+
<td style="text-align: center;">0.779</td>
|
785 |
+
<td style="text-align: center;">0.718</td>
|
786 |
</tr>
|
787 |
<tr class="odd">
|
788 |
<td style="text-align: center;">1-13B</td>
|
|
|
798 |
<tr class="even">
|
799 |
<td style="text-align: center;">1-13B</td>
|
800 |
<td style="text-align: center;">QuIP#</td>
|
801 |
+
<td style="text-align: center;">8.425</td>
|
802 |
+
<td style="text-align: center;">6.381</td>
|
803 |
+
<td style="text-align: center;">0.387</td>
|
804 |
+
<td style="text-align: center;">0.536</td>
|
805 |
+
<td style="text-align: center;">0.647</td>
|
806 |
+
<td style="text-align: center;">0.750</td>
|
807 |
+
<td style="text-align: center;">0.669</td>
|
808 |
</tr>
|
809 |
<tr class="odd">
|
810 |
<td style="text-align: center;">1-7B</td>
|
|
|
820 |
<tr class="even">
|
821 |
<td style="text-align: center;">1-7B</td>
|
822 |
<td style="text-align: center;">QuIP#</td>
|
823 |
+
<td style="text-align: center;">10.970</td>
|
824 |
+
<td style="text-align: center;">8.286</td>
|
825 |
+
<td style="text-align: center;">0.352</td>
|
826 |
+
<td style="text-align: center;">0.464</td>
|
827 |
+
<td style="text-align: center;">0.647</td>
|
828 |
+
<td style="text-align: center;">0.720</td>
|
829 |
+
<td style="text-align: center;">0.624</td>
|
830 |
</tr>
|
831 |
</tbody>
|
832 |
</table>
|
quip-sharp/docs/index.md
CHANGED
@@ -52,7 +52,7 @@ These two methods allow QuIP# to significantly close the gap between 2 bit quant
|
|
52 |
| OPTQ | 3 bit | 4.577 | 6.838 | 0.544 | **0.786** |
|
53 |
| OPTQ | 2 bit | 109.820 | 62.692 | 0.253 | 0.505 |
|
54 |
| QuIP | 2 bit | 5.574 | 8.268 | 0.544 | 0.751 |
|
55 |
-
| **QuIP#** | **2 bit** | **4.
|
56 |
|
57 |
:Quantization results on Llama 2 70B. QuIP# achieves near-native performance at 2 bits, outperforming all other presented baselines.
|
58 |
|
@@ -237,18 +237,18 @@ Additional results are available [here](https://docs.google.com/spreadsheets/d/1
|
|
237 |
| Model | Method | C4 $\downarrow$ | Wiki $\downarrow$ | ArcC $\uparrow$ | ArcE $\uparrow$ | BoolQ $\uparrow$ | PiQA $\uparrow$ | WinoGrande $\uparrow$ |
|
238 |
|:---------:|:---------:|:---------------:|:-----------------:|:---------------:|:---------------:|:-------------------:|:---------------:|:-------------------------------:|
|
239 |
| 2-70B | fp16 | 5.533 | 3.120 | 0.480 | 0.597 | 0.766 | 0.809 | 0.768 |
|
240 |
-
| 2-70B | QuIP# | 6.
|
241 |
| 2-13B | fp16 | 6.520 | 4.574 | 0.443 | 0.580 | 0.690 | 0.790 | 0.699 |
|
242 |
-
| 2-13B | QuIP# | 8.
|
243 |
| 2-7B | fp16 | 7.036 | 5.116 | 0.406 | 0.535 | 0.710 | 0.769 | 0.670 |
|
244 |
-
| 2-7B | QuIP# | 12.
|
245 |
| 1-65b | fp16 | 5.811 | 3.532 | 0.463 | 0.588 | 0.823 | 0.809 | 0.771 |
|
246 |
-
| 1-65b | QuIP# | 6.
|
247 |
| 1-30B | fp16 | 6.130 | 4.101 | 0.453 | 0.590 | 0.684 | 0.801 | 0.728 |
|
248 |
-
| 1-30B | QuIP# | 7.
|
249 |
| 1-13B | fp16 | 6.798 | 5.091 | 0.444 | 0.599 | 0.684 | 0.792 | 0.701 |
|
250 |
-
| 1-13B | QuIP# | 8.
|
251 |
| 1-7B | fp16 | 7.343 | 5.677 | 0.415 | 0.525 | 0.731 | 0.774 | 0.670 |
|
252 |
-
| 1-7B | QuIP# | 10.
|
253 |
:QuIP# results across all Llama 1 and 2 models. QuIP# achieves near-native performance at 2 bits on language modeling (C4, Wiki) and zero shot (ArcC, ArcE, BoolQ, PiQA, WinoGrande) tasks.
|
254 |
</div>
|
|
|
52 |
| OPTQ | 3 bit | 4.577 | 6.838 | 0.544 | **0.786** |
|
53 |
| OPTQ | 2 bit | 109.820 | 62.692 | 0.253 | 0.505 |
|
54 |
| QuIP | 2 bit | 5.574 | 8.268 | 0.544 | 0.751 |
|
55 |
+
| **QuIP#** | **2 bit** | **4.159** | **6.529** | **0.595** | 0.786 |
|
56 |
|
57 |
:Quantization results on Llama 2 70B. QuIP# achieves near-native performance at 2 bits, outperforming all other presented baselines.
|
58 |
|
|
|
237 |
| Model | Method | C4 $\downarrow$ | Wiki $\downarrow$ | ArcC $\uparrow$ | ArcE $\uparrow$ | BoolQ $\uparrow$ | PiQA $\uparrow$ | WinoGrande $\uparrow$ |
|
238 |
|:---------:|:---------:|:---------------:|:-----------------:|:---------------:|:---------------:|:-------------------:|:---------------:|:-------------------------------:|
|
239 |
| 2-70B | fp16 | 5.533 | 3.120 | 0.480 | 0.597 | 0.766 | 0.809 | 0.768 |
|
240 |
+
| 2-70B | QuIP# | 6.529 | 4.158 | 0.472 | 0.595 | 0.791 | 0.786 | 0.742 |
|
241 |
| 2-13B | fp16 | 6.520 | 4.574 | 0.443 | 0.580 | 0.690 | 0.790 | 0.699 |
|
242 |
+
| 2-13B | QuIP# | 8.755 | 6.058 | 0.371 | 0.501 | 0.665 | 0.757 | 0.636 |
|
243 |
| 2-7B | fp16 | 7.036 | 5.116 | 0.406 | 0.535 | 0.710 | 0.769 | 0.670 |
|
244 |
+
| 2-7B | QuIP# | 12.062 | 8.224 | 0.325 | 0.428 | 0.623 | 0.712 | 0.624 |
|
245 |
| 1-65b | fp16 | 5.811 | 3.532 | 0.463 | 0.588 | 0.823 | 0.809 | 0.771 |
|
246 |
+
| 1-65b | QuIP# | 6.744 | 4.566 | 0.436 | 0.569 | 0.817 | 0.805 | 0.736 |
|
247 |
| 1-30B | fp16 | 6.130 | 4.101 | 0.453 | 0.590 | 0.684 | 0.801 | 0.728 |
|
248 |
+
| 1-30B | QuIP# | 7.471 | 5.317 | 0.429 | 0.545 | 0.669 | 0.779 | 0.718 |
|
249 |
| 1-13B | fp16 | 6.798 | 5.091 | 0.444 | 0.599 | 0.684 | 0.792 | 0.701 |
|
250 |
+
| 1-13B | QuIP# | 8.425 | 6.381 | 0.387 | 0.536 | 0.647 | 0.750 | 0.669 |
|
251 |
| 1-7B | fp16 | 7.343 | 5.677 | 0.415 | 0.525 | 0.731 | 0.774 | 0.670 |
|
252 |
+
| 1-7B | QuIP# | 10.970 | 8.286 | 0.352 | 0.464 | 0.647 | 0.720 | 0.624 |
|
253 |
:QuIP# results across all Llama 1 and 2 models. QuIP# achieves near-native performance at 2 bits on language modeling (C4, Wiki) and zero shot (ArcC, ArcE, BoolQ, PiQA, WinoGrande) tasks.
|
254 |
</div>
|
quip-sharp/hfize_llama.py
CHANGED
@@ -5,7 +5,6 @@ import torch
|
|
5 |
from transformers import AutoTokenizer
|
6 |
from model.version import MODEL_VERSION
|
7 |
from model.llama import LlamaForCausalLM as llama_fuse
|
8 |
-
from model.llama_nofuse import LlamaForCausalLM as llama_nofuse
|
9 |
from model.mistral import MistralForCausalLM
|
10 |
from lib import codebook
|
11 |
from lib.utils.unsafe_import import model_from_hf_path
|
@@ -32,7 +31,6 @@ def unpack_quip(module, saved_layer, codebook_id, codesz):
|
|
32 |
module.B.copy_(saved_layer['B'])
|
33 |
module.SU.copy_(saved_layer['SU'])
|
34 |
module.SV.copy_(saved_layer['SV'])
|
35 |
-
module.Wscale.copy_(saved_layer['Wscale'])
|
36 |
if module.rescale_WH:
|
37 |
module.scaleWH.copy_(saved_layer['scaleWH'])
|
38 |
|
@@ -50,11 +48,10 @@ def main(args):
|
|
50 |
tokenizer = AutoTokenizer.from_pretrained(model_config._name_or_path)
|
51 |
|
52 |
model_type = model_config.model_type
|
53 |
-
fused = model_config.quip_params.get('fused', True)
|
54 |
model_config.quip_params['model_version'] = MODEL_VERSION
|
55 |
|
56 |
if model_type == 'llama':
|
57 |
-
model_cls = llama_fuse
|
58 |
elif model_type == 'mistral':
|
59 |
model_cls = MistralForCausalLM
|
60 |
else:
|
@@ -71,80 +68,32 @@ def main(args):
|
|
71 |
layer = model.model.layers[ii]
|
72 |
cpu = torch.device('cpu')
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
unpack_quip(layer.mlp.down_proj, saved_layer, codebook_id, codesz)
|
101 |
-
|
102 |
-
else:
|
103 |
-
saved_layer = torch.load(f'{args.quantized_path}/{ii}_q.pt', map_location=cpu)
|
104 |
-
layer.self_attn.q_scale.copy_(saved_layer['W_scale'])
|
105 |
-
if model_config.quip_params['outlier_channel_split']:
|
106 |
-
layer.self_attn.q_proj.ocs_dupe_inds.copy_(
|
107 |
-
torch.tensor(saved_layer['ocs_dupe_inds']))
|
108 |
-
unpack_quip(layer.self_attn.q_proj, saved_layer, codebook_id, codesz)
|
109 |
-
|
110 |
-
saved_layer = torch.load(f'{args.quantized_path}/{ii}_k.pt', map_location=cpu)
|
111 |
-
layer.self_attn.k_scale.copy_(saved_layer['W_scale'])
|
112 |
-
if model_config.quip_params['outlier_channel_split']:
|
113 |
-
layer.self_attn.k_proj.ocs_dupe_inds.copy_(
|
114 |
-
torch.tensor(saved_layer['ocs_dupe_inds']))
|
115 |
-
unpack_quip(layer.self_attn.k_proj, saved_layer, codebook_id, codesz)
|
116 |
-
|
117 |
-
saved_layer = torch.load(f'{args.quantized_path}/{ii}_v.pt', map_location=cpu)
|
118 |
-
layer.self_attn.v_scale.copy_(saved_layer['W_scale'])
|
119 |
-
if model_config.quip_params['outlier_channel_split']:
|
120 |
-
layer.self_attn.v_proj.ocs_dupe_inds.copy_(
|
121 |
-
torch.tensor(saved_layer['ocs_dupe_inds']))
|
122 |
-
unpack_quip(layer.self_attn.v_proj, saved_layer, codebook_id, codesz)
|
123 |
-
|
124 |
-
saved_layer = torch.load(f'{args.quantized_path}/{ii}_o.pt', map_location=cpu)
|
125 |
-
layer.self_attn.o_scale.copy_(saved_layer['W_scale'])
|
126 |
-
if model_config.quip_params['outlier_channel_split']:
|
127 |
-
layer.self_attn.o_proj.ocs_dupe_inds.copy_(
|
128 |
-
torch.tensor(saved_layer['ocs_dupe_inds']))
|
129 |
-
unpack_quip(layer.self_attn.o_proj, saved_layer, codebook_id, codesz)
|
130 |
-
|
131 |
-
saved_layer = torch.load(f'{args.quantized_path}/{ii}_up.pt', map_location=cpu)
|
132 |
-
layer.mlp.up_scale.copy_(saved_layer['W_scale'])
|
133 |
-
if model_config.quip_params['outlier_channel_split']:
|
134 |
-
layer.mlp.up_proj.ocs_dupe_inds.copy_(torch.tensor(saved_layer['ocs_dupe_inds']))
|
135 |
-
unpack_quip(layer.mlp.up_proj, saved_layer, codebook_id, codesz)
|
136 |
-
|
137 |
-
saved_layer = torch.load(f'{args.quantized_path}/{ii}_gate.pt', map_location=cpu)
|
138 |
-
layer.mlp.gate_scale.copy_(saved_layer['W_scale'])
|
139 |
-
if model_config.quip_params['outlier_channel_split']:
|
140 |
-
layer.mlp.gate_proj.ocs_dupe_inds.copy_(torch.tensor(saved_layer['ocs_dupe_inds']))
|
141 |
-
unpack_quip(layer.mlp.gate_proj, saved_layer, codebook_id, codesz)
|
142 |
-
|
143 |
-
saved_layer = torch.load(f'{args.quantized_path}/{ii}_down.pt', map_location=cpu)
|
144 |
-
layer.mlp.down_scale.copy_(saved_layer['W_scale'])
|
145 |
-
if model_config.quip_params['outlier_channel_split']:
|
146 |
-
layer.mlp.down_proj.ocs_dupe_inds.copy_(torch.tensor(saved_layer['ocs_dupe_inds']))
|
147 |
-
unpack_quip(layer.mlp.down_proj, saved_layer, codebook_id, codesz)
|
148 |
|
149 |
glog.info(f'saving model...')
|
150 |
model.save_pretrained(args.hf_output_path, safe_serialization=True)
|
|
|
5 |
from transformers import AutoTokenizer
|
6 |
from model.version import MODEL_VERSION
|
7 |
from model.llama import LlamaForCausalLM as llama_fuse
|
|
|
8 |
from model.mistral import MistralForCausalLM
|
9 |
from lib import codebook
|
10 |
from lib.utils.unsafe_import import model_from_hf_path
|
|
|
31 |
module.B.copy_(saved_layer['B'])
|
32 |
module.SU.copy_(saved_layer['SU'])
|
33 |
module.SV.copy_(saved_layer['SV'])
|
|
|
34 |
if module.rescale_WH:
|
35 |
module.scaleWH.copy_(saved_layer['scaleWH'])
|
36 |
|
|
|
48 |
tokenizer = AutoTokenizer.from_pretrained(model_config._name_or_path)
|
49 |
|
50 |
model_type = model_config.model_type
|
|
|
51 |
model_config.quip_params['model_version'] = MODEL_VERSION
|
52 |
|
53 |
if model_type == 'llama':
|
54 |
+
model_cls = llama_fuse
|
55 |
elif model_type == 'mistral':
|
56 |
model_cls = MistralForCausalLM
|
57 |
else:
|
|
|
68 |
layer = model.model.layers[ii]
|
69 |
cpu = torch.device('cpu')
|
70 |
|
71 |
+
glog.info(f'loading layer {ii} qkv')
|
72 |
+
saved_layer = torch.load(f'{args.quantized_path}/{ii}_qkv.pt', map_location=cpu)
|
73 |
+
layer.self_attn.qkv_proj.fuse_scales[0].copy_(saved_layer['W_q_scale'])
|
74 |
+
layer.self_attn.qkv_proj.fuse_scales[1].copy_(saved_layer['W_k_scale'])
|
75 |
+
layer.self_attn.qkv_proj.fuse_scales[2].copy_(saved_layer['W_v_scale'])
|
76 |
+
layer.self_attn.qkv_proj.Wscale.copy_(saved_layer['Wscale'])
|
77 |
+
unpack_quip(layer.self_attn.qkv_proj, saved_layer, codebook_id, codesz)
|
78 |
+
|
79 |
+
glog.info(f'loading layer {ii} up')
|
80 |
+
saved_layer = torch.load(f'{args.quantized_path}/{ii}_up.pt', map_location=cpu)
|
81 |
+
layer.mlp.upgate_proj.fuse_scales[0].copy_(saved_layer['W_up_scale'])
|
82 |
+
layer.mlp.upgate_proj.fuse_scales[1].copy_(saved_layer['W_gate_scale'])
|
83 |
+
layer.mlp.upgate_proj.Wscale.copy_(saved_layer['Wscale'])
|
84 |
+
unpack_quip(layer.mlp.upgate_proj, saved_layer, codebook_id, codesz)
|
85 |
+
|
86 |
+
glog.info(f'loading layer {ii} o')
|
87 |
+
saved_layer = torch.load(f'{args.quantized_path}/{ii}_o.pt', map_location=cpu)
|
88 |
+
layer.self_attn.o_proj.Wscale.copy_(saved_layer['W_o_scale'] * saved_layer['Wscale'])
|
89 |
+
unpack_quip(layer.self_attn.o_proj, saved_layer, codebook_id, codesz)
|
90 |
+
|
91 |
+
glog.info(f'loading layer {ii} down')
|
92 |
+
saved_layer = torch.load(f'{args.quantized_path}/{ii}_down.pt', map_location=cpu)
|
93 |
+
layer.mlp.down_proj.Wscale.copy_(saved_layer['W_down_scale'] * saved_layer['Wscale'])
|
94 |
+
if model_config.quip_params['outlier_channel_split']:
|
95 |
+
layer.mlp.down_proj.ocs_dupe_inds.copy_(torch.tensor(saved_layer['ocs_dupe_inds']))
|
96 |
+
unpack_quip(layer.mlp.down_proj, saved_layer, codebook_id, codesz)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
glog.info(f'saving model...')
|
99 |
model.save_pretrained(args.hf_output_path, safe_serialization=True)
|
quip-sharp/lib/__pycache__/__init__.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/lib/__pycache__/__init__.cpython-310.pyc and b/quip-sharp/lib/__pycache__/__init__.cpython-310.pyc differ
|
|
quip-sharp/lib/codebook/__pycache__/__init__.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/lib/codebook/__pycache__/__init__.cpython-310.pyc and b/quip-sharp/lib/codebook/__pycache__/__init__.cpython-310.pyc differ
|
|
quip-sharp/lib/codebook/__pycache__/half_integer_4bit_1col.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/lib/codebook/__pycache__/half_integer_4bit_1col.cpython-310.pyc and b/quip-sharp/lib/codebook/__pycache__/half_integer_4bit_1col.cpython-310.pyc differ
|
|
quip-sharp/lib/codebook/__pycache__/latticed4.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/lib/codebook/__pycache__/latticed4.cpython-310.pyc and b/quip-sharp/lib/codebook/__pycache__/latticed4.cpython-310.pyc differ
|
|
quip-sharp/lib/codebook/__pycache__/latticee8_padded12.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/lib/codebook/__pycache__/latticee8_padded12.cpython-310.pyc and b/quip-sharp/lib/codebook/__pycache__/latticee8_padded12.cpython-310.pyc differ
|
|
quip-sharp/lib/codebook/latticee8_padded12.py
CHANGED
@@ -6,7 +6,6 @@ The total codebook is all 2^7 flips of these 256 entries (2^15) +- 1/4
|
|
6 |
which makes 2^16 entries.
|
7 |
This corresponds to a subset of E8 + 1/4
|
8 |
"""
|
9 |
-
|
10 |
import torch
|
11 |
import math
|
12 |
from torch import nn
|
@@ -22,19 +21,12 @@ _INT_MAP = 2**(torch.arange(_E8P_CODESZ).flip(0))
|
|
22 |
def int2mask(i, int_map):
|
23 |
return ((i & int_map) > 0).int()
|
24 |
|
25 |
-
|
26 |
def mask2int(mask, int_map):
|
27 |
return (int_map.unsqueeze(0) * mask.int()).sum(dim=-1)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
d8 = torch.cartesian_prod(*[intr] * _E8P_CODESZ).float() + 1 / 2
|
33 |
-
d8m2 = (d8.sum(dim=-1) % 2 == 0)
|
34 |
-
d8n = d8.norm(dim=-1)**2 <= 10
|
35 |
-
d8abs = torch.unique(d8[sorted(torch.where(d8m2 * d8n)[0])].abs(), dim=0)
|
36 |
-
|
37 |
-
norm12 = torch.tensor([
|
38 |
[3, 1, 1, 1, 3, 3, 3, 3],
|
39 |
[1, 3, 1, 1, 3, 3, 3, 3],
|
40 |
[1, 1, 3, 1, 3, 3, 3, 3],
|
@@ -62,82 +54,81 @@ def get_abs_grid():
|
|
62 |
[1, 3, 3, 3, 1, 3, 3, 1],
|
63 |
[1, 3, 3, 3, 3, 1, 1, 3],
|
64 |
[1, 3, 3, 3, 1, 3, 1, 3],
|
65 |
-
[1,
|
66 |
[3, 3, 1, 1, 3, 3, 3, 1],
|
67 |
]) / 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
return torch.concat([d8abs, norm12], dim=0)
|
69 |
|
70 |
|
71 |
-
def get_full_grid(
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
idxs[i] = torch.concat(idxs[i], dim=0)
|
96 |
-
entries = torch.concat(entries, dim=0)
|
97 |
-
idxs = torch.concat(idxs, dim=0)
|
98 |
-
return entries, idxs
|
99 |
-
|
100 |
-
|
101 |
-
_E8P_ABS_CACHED = get_abs_grid()
|
102 |
-
_E8P_GRID, _E8P_GRID_IDX = get_full_grid(_E8P_ABS_CACHED)
|
103 |
|
104 |
|
105 |
class E8P12_codebook(nn.Module):
|
106 |
|
107 |
def __init__(self, inference=False):
|
108 |
super(E8P12_codebook, self).__init__()
|
109 |
-
self.opt_scale = 1
|
110 |
self.codesz = _E8P_CODESZ
|
111 |
-
self.idx_dtype = torch.
|
112 |
-
self.
|
113 |
-
self.packsz = 1
|
114 |
self.pack_out = False
|
115 |
-
self.version =
|
116 |
|
117 |
-
self.register_buffer('
|
118 |
-
self.register_buffer('grid_abs_even', self.grid_abs.sum(dim=-1) % 2 == 0)
|
119 |
|
120 |
if not inference:
|
121 |
-
self.register_buffer('int_map', _INT_MAP)
|
122 |
self.register_buffer('grid', _E8P_GRID)
|
123 |
-
self.register_buffer('
|
124 |
-
(_E8P_GRID_IDX + self.idx_offset).to(self.idx_dtype))
|
125 |
-
idx_lut = torch.zeros(_E8P_GRID_IDX.shape).int()
|
126 |
-
idx_lut[_E8P_GRID_IDX] = torch.arange(len(_E8P_GRID_IDX)).int()
|
127 |
-
self.register_buffer('grid_idx_inv', idx_lut)
|
128 |
-
|
129 |
-
self.register_buffer('grid_norm', torch.diag(self.grid @ self.grid.T))
|
130 |
-
grid_part = self.grid[:len(self.grid) // 2] - 1 / 4
|
131 |
-
idxs = torch.where(
|
132 |
-
((grid_part[:, 1:] < 0).sum(dim=-1) <= 1) * \
|
133 |
-
(grid_part[:, 1:].min(dim=-1).values >= -0.5)
|
134 |
-
)[0]
|
135 |
-
grid_part = grid_part[idxs]
|
136 |
-
self.register_buffer('grid_part', grid_part)
|
137 |
-
self.register_buffer('grid_part_norm', torch.diag(grid_part @ grid_part.T))
|
138 |
-
allcombo_idx, idx_map = self.iterate_mask()
|
139 |
-
self.register_buffer('allcombo_idx', allcombo_idx)
|
140 |
-
self.register_buffer('idx_map', idx_map)
|
141 |
'''
|
142 |
self.to('cuda')
|
143 |
samples = torch.distributions.multivariate_normal.MultivariateNormal(torch.zeros(8), torch.eye(8)).rsample([2000000]).cuda()
|
@@ -146,60 +137,44 @@ class E8P12_codebook(nn.Module):
|
|
146 |
exit()
|
147 |
'''
|
148 |
|
149 |
-
def iterate_mask(self, device=0):
|
150 |
-
flips = torch.stack([((torch.tensor([i]) & self.int_map) > 0).int()
|
151 |
-
for i in range(2**_E8P_CODESZ)]).to(device)
|
152 |
-
raw_idx = torch.where(flips.sum(dim=-1) % 2 == 0)[0]
|
153 |
-
flips = 1 - 2 * flips[raw_idx]
|
154 |
-
idx_map = torch.zeros(2**_E8P_CODESZ, dtype=torch.int32)
|
155 |
-
for i in range(len(raw_idx)):
|
156 |
-
idx_map[raw_idx[i]] = i
|
157 |
-
allcombo = flips.unsqueeze(1) * self.grid_part.unsqueeze(0).to(device)
|
158 |
-
allcombo_idx = torch.zeros(allcombo.shape[0:2]).int()
|
159 |
-
for i in range(len(allcombo)):
|
160 |
-
allcombo_idx[i] = self.round(allcombo[i], self.grid.to(device),
|
161 |
-
self.grid_norm.to(device))[1]
|
162 |
-
return allcombo_idx.cpu(), idx_map.cpu()
|
163 |
-
|
164 |
def round(self, X, grid, grid_norm):
|
165 |
assert X.shape[-1] == self.codesz
|
166 |
Xqidx = (2 * X @ grid.T - grid_norm).argmax(-1)
|
167 |
return grid[Xqidx], Xqidx
|
168 |
|
169 |
-
def fast_quantize_part(self, X):
|
170 |
-
X_part = torch.abs(X)
|
171 |
-
X_odd = torch.where((X < 0).sum(dim=-1) % 2 != 0)[0]
|
172 |
-
X_part[X_odd, 0] = -X_part[X_odd, 0]
|
173 |
-
mask = 1 - 2 * (X < 0).to(torch.float32)
|
174 |
-
mask[X_odd, 0] = -mask[X_odd, 0]
|
175 |
-
roundout, Xqidx = self.round(X_part, self.grid_part, self.grid_part_norm)
|
176 |
-
vals = roundout * mask
|
177 |
-
real_idx = self.allcombo_idx[self.idx_map[mask2int((1 - mask) / 2, self.int_map)], Xqidx]
|
178 |
-
err = (X - vals).norm(dim=-1)
|
179 |
-
return vals, real_idx, err
|
180 |
-
|
181 |
def quantize(self, X, return_idx=True):
|
182 |
-
|
183 |
-
X_minus = X - 1 / 4 # quantize X to D8^ + 1/4
|
184 |
-
|
185 |
-
plus_vals, plus_idx, plus_err = self.fast_quantize_part(X_plus)
|
186 |
-
minus_vals, minus_idx, minus_err = self.fast_quantize_part(X_minus)
|
187 |
-
plus_idx = plus_idx + 2**15
|
188 |
-
|
189 |
-
which = plus_err < minus_err
|
190 |
-
final_vals = torch.where(which.unsqueeze(-1), plus_vals - 1 / 4, minus_vals + 1 / 4)
|
191 |
-
|
192 |
if return_idx:
|
193 |
-
final_idxs = self.grid_idx_map[torch.where(which, plus_idx, minus_idx)]
|
194 |
return final_vals, final_idxs
|
195 |
-
|
196 |
return final_vals
|
197 |
|
198 |
-
def maybe_pack_idxs(self, idxs):
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
def by_idxs(self, idxs, **kwargs):
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
|
205 |
class QuantizedE8P12Linear(nn.Module):
|
@@ -207,10 +182,6 @@ class QuantizedE8P12Linear(nn.Module):
|
|
207 |
def __init__(self, device):
|
208 |
super().__init__()
|
209 |
self.codebook = E8P12_codebook(inference=True).to(torch.float16).to(device)
|
210 |
-
self.codebook_matvec = torch.zeros((256, ), dtype=torch.int64, device=device)
|
211 |
-
for i in range(8):
|
212 |
-
chunk = (self.codebook.grid_abs[:, i] * 4).to(torch.int64)
|
213 |
-
self.codebook_matvec |= chunk << (i * 8)
|
214 |
|
215 |
def forward(self,
|
216 |
input,
|
@@ -228,9 +199,9 @@ class QuantizedE8P12Linear(nn.Module):
|
|
228 |
rescale_WH=False,
|
229 |
scaleWH=None,
|
230 |
**kwargs):
|
231 |
-
|
232 |
|
233 |
-
x = input.view(-1, n
|
234 |
if rescale_WH:
|
235 |
x /= scaleWH
|
236 |
x = x * SU
|
@@ -240,17 +211,17 @@ class QuantizedE8P12Linear(nn.Module):
|
|
240 |
Bx = x @ B.t().to(torch.float32)
|
241 |
ABx = Bx @ A.t().to(torch.float32)
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
|
|
247 |
else:
|
248 |
-
W_decompressed =
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
quiptools_cuda.decompress_e8p_origorder(Qidxs, self.codebook.grid_abs,
|
253 |
-
self.codebook.grid_abs_even, W_decompressed)
|
254 |
x = (x.to(torch.float16) @ W_decompressed.T).to(torch.float32)
|
255 |
|
256 |
x *= Wscale
|
|
|
6 |
which makes 2^16 entries.
|
7 |
This corresponds to a subset of E8 + 1/4
|
8 |
"""
|
|
|
9 |
import torch
|
10 |
import math
|
11 |
from torch import nn
|
|
|
21 |
def int2mask(i, int_map):
|
22 |
return ((i & int_map) > 0).int()
|
23 |
|
|
|
24 |
def mask2int(mask, int_map):
|
25 |
return (int_map.unsqueeze(0) * mask.int()).sum(dim=-1)
|
26 |
|
27 |
+
def get_norm12():
|
28 |
+
# 29 elements of norm 12 in E8 + 1/4
|
29 |
+
return torch.tensor([
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
[3, 1, 1, 1, 3, 3, 3, 3],
|
31 |
[1, 3, 1, 1, 3, 3, 3, 3],
|
32 |
[1, 1, 3, 1, 3, 3, 3, 3],
|
|
|
54 |
[1, 3, 3, 3, 1, 3, 3, 1],
|
55 |
[1, 3, 3, 3, 3, 1, 1, 3],
|
56 |
[1, 3, 3, 3, 1, 3, 1, 3],
|
57 |
+
[1, 1, 3, 3, 1, 3, 3, 3],
|
58 |
[3, 3, 1, 1, 3, 3, 3, 1],
|
59 |
]) / 2
|
60 |
+
|
61 |
+
|
62 |
+
def get_packed_abs_grid():
|
63 |
+
intr = torch.arange(-4, 4)
|
64 |
+
d8 = torch.cartesian_prod(*[intr] * 8).float() + 1 / 2
|
65 |
+
d8m2 = (d8.sum(dim=-1) % 2 == 0)
|
66 |
+
d8n = d8.norm(dim=-1)**2 <= 10
|
67 |
+
d8abs = torch.unique(d8[sorted(torch.where(d8m2 * d8n)[0])].abs(), dim=0)
|
68 |
+
norm12 = get_norm12()
|
69 |
+
cba = torch.concat([d8abs, norm12], dim=0)
|
70 |
+
cba = cba[:, [0, 2, 4, 6, 1, 3, 5, 7]]
|
71 |
+
cba[:,7] *= (1 - 2 * (cba.sum(1) % 2))
|
72 |
+
cba = cba * 2 + 8
|
73 |
+
cba = cba.to(torch.int32)
|
74 |
+
acc = cba[:,0]
|
75 |
+
for i in range(7):
|
76 |
+
acc = acc | (cba[:,(i+1)] << ((i+1)*4))
|
77 |
+
return acc
|
78 |
+
|
79 |
+
|
80 |
+
def get_abs_grid():
|
81 |
+
intr = torch.arange(-4, 4)
|
82 |
+
d8 = torch.cartesian_prod(*[intr] * _E8P_CODESZ).float() + 1 / 2
|
83 |
+
d8m2 = (d8.sum(dim=-1) % 2 == 0)
|
84 |
+
d8n = d8.norm(dim=-1)**2 <= 10
|
85 |
+
d8abs = torch.unique(d8[sorted(torch.where(d8m2 * d8n)[0])].abs(), dim=0)
|
86 |
+
norm12 = get_norm12()
|
87 |
return torch.concat([d8abs, norm12], dim=0)
|
88 |
|
89 |
|
90 |
+
def get_full_grid(packed_abs_grid):
|
91 |
+
synth_codebook = torch.zeros(1 << 16, 8)
|
92 |
+
shuffle_map = [0,4,1,5,2,6,3,7]
|
93 |
+
for c in range(1 << 16):
|
94 |
+
signs = c & 255
|
95 |
+
abs = c >> 8
|
96 |
+
parity = 0
|
97 |
+
for i in range(8):
|
98 |
+
parity = parity ^ ((signs >> i) & 1)
|
99 |
+
signs = signs ^ parity
|
100 |
+
abs_code = packed_abs_grid[abs].item()
|
101 |
+
for i in range(8):
|
102 |
+
ii = shuffle_map[i]
|
103 |
+
synth_codebook[c,i] = (((abs_code >> (4 * ii)) & 15) - 8) * 0.5
|
104 |
+
if ((signs >> ii) & 1):
|
105 |
+
synth_codebook[c,i] *= -1
|
106 |
+
if parity:
|
107 |
+
synth_codebook[c,:] -= 0.25
|
108 |
+
else:
|
109 |
+
synth_codebook[c,:] += 0.25
|
110 |
+
return synth_codebook, torch.arange(1 << 16)
|
111 |
+
|
112 |
+
_E8P_PACKED_ABS_CACHED = get_packed_abs_grid()
|
113 |
+
_E8P_GRID, _E8P_GRID_IDX = get_full_grid(_E8P_PACKED_ABS_CACHED)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
|
116 |
class E8P12_codebook(nn.Module):
|
117 |
|
118 |
def __init__(self, inference=False):
|
119 |
super(E8P12_codebook, self).__init__()
|
120 |
+
self.opt_scale = 1.03
|
121 |
self.codesz = _E8P_CODESZ
|
122 |
+
self.idx_dtype = torch.int64
|
123 |
+
self.packsz = 4
|
|
|
124 |
self.pack_out = False
|
125 |
+
self.version = 1
|
126 |
|
127 |
+
self.register_buffer('grid_packed_abs', _E8P_PACKED_ABS_CACHED)
|
|
|
128 |
|
129 |
if not inference:
|
|
|
130 |
self.register_buffer('grid', _E8P_GRID)
|
131 |
+
self.register_buffer('grid_norm', _E8P_GRID.norm(dim=-1)**2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
'''
|
133 |
self.to('cuda')
|
134 |
samples = torch.distributions.multivariate_normal.MultivariateNormal(torch.zeros(8), torch.eye(8)).rsample([2000000]).cuda()
|
|
|
137 |
exit()
|
138 |
'''
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
def round(self, X, grid, grid_norm):
|
141 |
assert X.shape[-1] == self.codesz
|
142 |
Xqidx = (2 * X @ grid.T - grid_norm).argmax(-1)
|
143 |
return grid[Xqidx], Xqidx
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
def quantize(self, X, return_idx=True):
|
146 |
+
final_vals, final_idxs = self.round(X, self.grid, self.grid_norm)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
if return_idx:
|
|
|
148 |
return final_vals, final_idxs
|
|
|
149 |
return final_vals
|
150 |
|
151 |
+
def maybe_pack_idxs(self, idxs):
|
152 |
+
m, n = idxs.shape
|
153 |
+
idxs = idxs.view(m//2, 2, (n*8)//16, 2).transpose(1, 2).contiguous()
|
154 |
+
|
155 |
+
abs32 = (idxs[:, :, 0, 0] >> 8) + \
|
156 |
+
((idxs[:, :, 1, 0] >> 8) << 8) + \
|
157 |
+
((idxs[:, :, 0, 1] >> 8) << 16) + \
|
158 |
+
((idxs[:, :, 1, 1] >> 8) << 24)
|
159 |
+
|
160 |
+
sign32 = torch.zeros(abs32.shape, dtype=abs32.dtype, device=abs32.device)
|
161 |
+
for i in range(4):
|
162 |
+
wt = idxs[:, :, i % 2, i // 2]
|
163 |
+
for j in range(8):
|
164 |
+
sign32 += ((wt >> j) & 1) << (4*j + i)
|
165 |
+
|
166 |
+
output = (sign32 << 32) + abs32
|
167 |
+
output = output.reshape(m//16, 8, n//8, 4).transpose(1, 2).contiguous()
|
168 |
+
return output.view(m, n//4)
|
169 |
+
|
170 |
def by_idxs(self, idxs, **kwargs):
|
171 |
+
m, n = idxs.shape
|
172 |
+
W_decompressed = quiptools_cuda.decompress_packed_e8p(
|
173 |
+
idxs.view(m//16, n//2, 8, 4),
|
174 |
+
self.grid_packed_abs
|
175 |
+
)
|
176 |
+
return W_decompressed
|
177 |
+
|
178 |
|
179 |
|
180 |
class QuantizedE8P12Linear(nn.Module):
|
|
|
182 |
def __init__(self, device):
|
183 |
super().__init__()
|
184 |
self.codebook = E8P12_codebook(inference=True).to(torch.float16).to(device)
|
|
|
|
|
|
|
|
|
185 |
|
186 |
def forward(self,
|
187 |
input,
|
|
|
199 |
rescale_WH=False,
|
200 |
scaleWH=None,
|
201 |
**kwargs):
|
202 |
+
n, m = len(SU), len(SV)
|
203 |
|
204 |
+
x = input.view(-1, n).to(torch.float32)
|
205 |
if rescale_WH:
|
206 |
x /= scaleWH
|
207 |
x = x * SU
|
|
|
211 |
Bx = x @ B.t().to(torch.float32)
|
212 |
ABx = Bx @ A.t().to(torch.float32)
|
213 |
|
214 |
+
if x.size(0) == 1:
|
215 |
+
x = quiptools_cuda.decode_matvec_e8p(
|
216 |
+
x[0].to(torch.float16),
|
217 |
+
Qidxs.view(m//16, n//64, 8, 4),
|
218 |
+
self.codebook.grid_packed_abs
|
219 |
+
).to(torch.float32)
|
220 |
else:
|
221 |
+
W_decompressed = quiptools_cuda.decompress_packed_e8p(
|
222 |
+
Qidxs.view(m//16, n//64, 8, 4),
|
223 |
+
self.codebook.grid_packed_abs
|
224 |
+
)
|
|
|
|
|
225 |
x = (x.to(torch.float16) @ W_decompressed.T).to(torch.float32)
|
226 |
|
227 |
x *= Wscale
|
quip-sharp/lib/linear/__pycache__/__init__.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/lib/linear/__pycache__/__init__.cpython-310.pyc and b/quip-sharp/lib/linear/__pycache__/__init__.cpython-310.pyc differ
|
|
quip-sharp/lib/linear/__pycache__/fused_quantized_linear.cpython-310.pyc
ADDED
Binary file (1.43 kB). View file
|
|
quip-sharp/lib/linear/__pycache__/quantized_linear.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/lib/linear/__pycache__/quantized_linear.cpython-310.pyc and b/quip-sharp/lib/linear/__pycache__/quantized_linear.cpython-310.pyc differ
|
|
quip-sharp/lib/linear/fused_quantized_linear.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import quiptools_cuda
|
4 |
+
from lib.utils import dtype_from_str, get_hadK
|
5 |
+
from lib import codebook
|
6 |
+
from .quantized_linear import QuantizedLinear
|
7 |
+
import time
|
8 |
+
|
9 |
+
|
10 |
+
class FusedQuantizedLinear(QuantizedLinear):
|
11 |
+
|
12 |
+
def __init__(self, fuse_dim, fuse_sizes, *QL_args, **QL_kwargs):
|
13 |
+
super(FusedQuantizedLinear, self).__init__(*QL_args, **QL_kwargs)
|
14 |
+
self.fuse_dim = fuse_dim
|
15 |
+
self.fuse_sizes = fuse_sizes
|
16 |
+
self.register_buffer('fuse_scales', torch.ones(len(self.fuse_sizes)))
|
17 |
+
self.n = len(self.fuse_sizes)
|
18 |
+
|
19 |
+
def forward(self, input):
|
20 |
+
fused_output = super(FusedQuantizedLinear, self).forward(input)
|
21 |
+
split_outputs = torch.split(fused_output, self.fuse_sizes, self.fuse_dim)
|
22 |
+
return tuple(split_outputs[i] * self.fuse_scales[i] for i in range(self.n))
|
quip-sharp/lib/linear/quantized_linear.py
CHANGED
@@ -18,7 +18,8 @@ class QuantizedLinear(nn.Module):
|
|
18 |
codebook_version,
|
19 |
outlier_channel_split=False,
|
20 |
rank=-1,
|
21 |
-
rescale_WH=False
|
|
|
22 |
super().__init__()
|
23 |
|
24 |
self.in_features = in_features
|
@@ -27,6 +28,10 @@ class QuantizedLinear(nn.Module):
|
|
27 |
self.rank = rank
|
28 |
self.rescale_WH = rescale_WH
|
29 |
|
|
|
|
|
|
|
|
|
30 |
if self.outlier_channel_split:
|
31 |
self.register_buffer('ocs_dupe_inds', torch.arange(in_features))
|
32 |
|
@@ -87,18 +92,22 @@ class QuantizedLinear(nn.Module):
|
|
87 |
if self.outlier_channel_split:
|
88 |
input = input[..., self.ocs_dupe_inds]
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
18 |
codebook_version,
|
19 |
outlier_channel_split=False,
|
20 |
rank=-1,
|
21 |
+
rescale_WH=False,
|
22 |
+
bias=False):
|
23 |
super().__init__()
|
24 |
|
25 |
self.in_features = in_features
|
|
|
28 |
self.rank = rank
|
29 |
self.rescale_WH = rescale_WH
|
30 |
|
31 |
+
self.has_bias = bias
|
32 |
+
if self.has_bias:
|
33 |
+
self.register_buffer('bias', torch.ones(out_features))
|
34 |
+
|
35 |
if self.outlier_channel_split:
|
36 |
self.register_buffer('ocs_dupe_inds', torch.arange(in_features))
|
37 |
|
|
|
92 |
if self.outlier_channel_split:
|
93 |
input = input[..., self.ocs_dupe_inds]
|
94 |
|
95 |
+
result = self.codebook_class(input,
|
96 |
+
self.Qidxs,
|
97 |
+
self.SU,
|
98 |
+
self.SV,
|
99 |
+
self.Wscale,
|
100 |
+
self.had_left,
|
101 |
+
self.had_right,
|
102 |
+
self.K_left,
|
103 |
+
self.K_right,
|
104 |
+
rank=self.rank,
|
105 |
+
A=self.A,
|
106 |
+
B=self.B,
|
107 |
+
rescale_WH=self.rescale_WH,
|
108 |
+
scaleWH=self.scaleWH,
|
109 |
+
packed=self.packed)
|
110 |
+
if self.has_bias:
|
111 |
+
return result + self.bias
|
112 |
+
return result
|
113 |
+
|
quip-sharp/lib/utils/__pycache__/__init__.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/lib/utils/__pycache__/__init__.cpython-310.pyc and b/quip-sharp/lib/utils/__pycache__/__init__.cpython-310.pyc differ
|
|
quip-sharp/lib/utils/__pycache__/data_utils.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/lib/utils/__pycache__/data_utils.cpython-310.pyc and b/quip-sharp/lib/utils/__pycache__/data_utils.cpython-310.pyc differ
|
|
quip-sharp/lib/utils/__pycache__/lm_eval_adaptor.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/lib/utils/__pycache__/lm_eval_adaptor.cpython-310.pyc and b/quip-sharp/lib/utils/__pycache__/lm_eval_adaptor.cpython-310.pyc differ
|
|
quip-sharp/lib/utils/__pycache__/math_utils.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/lib/utils/__pycache__/math_utils.cpython-310.pyc and b/quip-sharp/lib/utils/__pycache__/math_utils.cpython-310.pyc differ
|
|
quip-sharp/lib/utils/__pycache__/matmul_had.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/lib/utils/__pycache__/matmul_had.cpython-310.pyc and b/quip-sharp/lib/utils/__pycache__/matmul_had.cpython-310.pyc differ
|
|
quip-sharp/lib/utils/__pycache__/matmul_kron.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/lib/utils/__pycache__/matmul_kron.cpython-310.pyc and b/quip-sharp/lib/utils/__pycache__/matmul_kron.cpython-310.pyc differ
|
|
quip-sharp/lib/utils/__pycache__/misc.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/lib/utils/__pycache__/misc.cpython-310.pyc and b/quip-sharp/lib/utils/__pycache__/misc.cpython-310.pyc differ
|
|
quip-sharp/lib/utils/__pycache__/unsafe_import.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/lib/utils/__pycache__/unsafe_import.cpython-310.pyc and b/quip-sharp/lib/utils/__pycache__/unsafe_import.cpython-310.pyc differ
|
|
quip-sharp/lib/utils/data_utils.py
CHANGED
@@ -58,7 +58,6 @@ def block_LDL(H, b):
|
|
58 |
def wrap_tokenizer(tokenizer, x, ctx_size):
|
59 |
return tokenizer(x, return_tensors='pt', truncation=True, padding=True, max_length=ctx_size)
|
60 |
|
61 |
-
|
62 |
def sample_devset(dataset, tokenizer, size=128, ctx_size=2048, nproc=1):
|
63 |
devset = torch.zeros((size, ctx_size), dtype=torch.int64)
|
64 |
saved = 0
|
@@ -122,6 +121,7 @@ def load_quip(save_name, cb, args, device):
|
|
122 |
|
123 |
def dtype_from_str(str):
|
124 |
dtype_map = {
|
|
|
125 |
'torch.int32': torch.int32,
|
126 |
'torch.int16': torch.int16,
|
127 |
'torch.uint8': torch.uint8,
|
|
|
58 |
def wrap_tokenizer(tokenizer, x, ctx_size):
|
59 |
return tokenizer(x, return_tensors='pt', truncation=True, padding=True, max_length=ctx_size)
|
60 |
|
|
|
61 |
def sample_devset(dataset, tokenizer, size=128, ctx_size=2048, nproc=1):
|
62 |
devset = torch.zeros((size, ctx_size), dtype=torch.int64)
|
63 |
saved = 0
|
|
|
121 |
|
122 |
def dtype_from_str(str):
|
123 |
dtype_map = {
|
124 |
+
'torch.int64': torch.int64,
|
125 |
'torch.int32': torch.int32,
|
126 |
'torch.int16': torch.int16,
|
127 |
'torch.uint8': torch.uint8,
|
quip-sharp/lib/utils/unsafe_import.py
CHANGED
@@ -2,7 +2,6 @@
|
|
2 |
|
3 |
from model.graph_wrapper import get_graph_wrapper
|
4 |
from model.llama import LlamaForCausalLM as llama_fuse
|
5 |
-
from model.llama_nofuse import LlamaForCausalLM as llama_nofuse
|
6 |
from model.mistral import MistralForCausalLM
|
7 |
import json
|
8 |
import os
|
@@ -17,10 +16,9 @@ def model_from_hf_path(path, use_cuda_graph=True, use_flash_attn=True):
|
|
17 |
is_quantized = hasattr(bad_config, 'quip_params')
|
18 |
model_type = bad_config.model_type
|
19 |
if is_quantized:
|
20 |
-
fused = bad_config.quip_params.get('fused', True)
|
21 |
if model_type == 'llama':
|
22 |
model_str = transformers.LlamaConfig.from_pretrained(path)._name_or_path
|
23 |
-
model_cls = llama_fuse
|
24 |
elif model_type == 'mistral':
|
25 |
model_str = transformers.MistralConfig.from_pretrained(path)._name_or_path
|
26 |
model_cls = MistralForCausalLM
|
|
|
2 |
|
3 |
from model.graph_wrapper import get_graph_wrapper
|
4 |
from model.llama import LlamaForCausalLM as llama_fuse
|
|
|
5 |
from model.mistral import MistralForCausalLM
|
6 |
import json
|
7 |
import os
|
|
|
16 |
is_quantized = hasattr(bad_config, 'quip_params')
|
17 |
model_type = bad_config.model_type
|
18 |
if is_quantized:
|
|
|
19 |
if model_type == 'llama':
|
20 |
model_str = transformers.LlamaConfig.from_pretrained(path)._name_or_path
|
21 |
+
model_cls = llama_fuse
|
22 |
elif model_type == 'mistral':
|
23 |
model_str = transformers.MistralConfig.from_pretrained(path)._name_or_path
|
24 |
model_cls = MistralForCausalLM
|
quip-sharp/model/__pycache__/graph_wrapper.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/model/__pycache__/graph_wrapper.cpython-310.pyc and b/quip-sharp/model/__pycache__/graph_wrapper.cpython-310.pyc differ
|
|
quip-sharp/model/__pycache__/llama.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/model/__pycache__/llama.cpython-310.pyc and b/quip-sharp/model/__pycache__/llama.cpython-310.pyc differ
|
|
quip-sharp/model/__pycache__/mistral.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/model/__pycache__/mistral.cpython-310.pyc and b/quip-sharp/model/__pycache__/mistral.cpython-310.pyc differ
|
|
quip-sharp/model/__pycache__/version.cpython-310.pyc
CHANGED
Binary files a/quip-sharp/model/__pycache__/version.cpython-310.pyc and b/quip-sharp/model/__pycache__/version.cpython-310.pyc differ
|
|
quip-sharp/model/llama.py
CHANGED
@@ -48,6 +48,7 @@ if is_flash_attn_available():
|
|
48 |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
49 |
|
50 |
from lib.linear.quantized_linear import QuantizedLinear
|
|
|
51 |
from .version import check_model_version
|
52 |
|
53 |
logger = logging.get_logger(__name__)
|
@@ -225,15 +226,17 @@ class LlamaMLP(nn.Module):
|
|
225 |
self.config = config
|
226 |
self.hidden_size = config.hidden_size
|
227 |
self.intermediate_size = config.intermediate_size
|
228 |
-
self.upgate_proj =
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
237 |
self.down_proj = QuantizedLinear(
|
238 |
self.config.quip_params['ocs_down_size'] if \
|
239 |
self.config.quip_params['outlier_channel_split'] else self.intermediate_size,
|
@@ -246,24 +249,14 @@ class LlamaMLP(nn.Module):
|
|
246 |
outlier_channel_split=self.config.quip_params['outlier_channel_split'],
|
247 |
rank=self.config.quip_params['lora_rank'],
|
248 |
rescale_WH=self.config.quip_params['rescale_WH'])
|
249 |
-
self.register_buffer('up_scale', nn.Parameter(torch.ones(())))
|
250 |
-
self.register_buffer('gate_scale', nn.Parameter(torch.ones(())))
|
251 |
-
self.register_buffer('down_scale', nn.Parameter(torch.ones(())))
|
252 |
self.act_fn = ACT2FN[config.hidden_act]
|
253 |
|
254 |
def forward(self, x):
|
255 |
if self.config.pretraining_tp > 1:
|
256 |
raise Exception
|
257 |
-
else:
|
258 |
-
upgate_proj = self.upgate_proj(x.to(torch.float32))
|
259 |
-
up_proj = self.up_scale * upgate_proj[...,
|
260 |
-
0:self.intermediate_size]
|
261 |
-
gate_proj = self.gate_scale * upgate_proj[
|
262 |
-
..., self.intermediate_size:(self.intermediate_size * 2)]
|
263 |
-
down_proj = self.down_scale * self.down_proj(
|
264 |
-
self.act_fn(gate_proj) * up_proj)
|
265 |
|
266 |
-
|
|
|
267 |
|
268 |
|
269 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
@@ -297,7 +290,12 @@ class LlamaAttention(nn.Module):
|
|
297 |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
298 |
f" and `num_heads`: {self.num_heads})."
|
299 |
)
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
301 |
self.hidden_size, (self.num_heads * self.head_dim) +
|
302 |
(self.num_key_value_heads * self.head_dim) +
|
303 |
(self.num_key_value_heads * self.head_dim),
|
@@ -308,7 +306,7 @@ class LlamaAttention(nn.Module):
|
|
308 |
config.quip_params.get('codebook_version', 0),
|
309 |
rank=config.quip_params['lora_rank'],
|
310 |
rescale_WH=config.quip_params['rescale_WH'])
|
311 |
-
|
312 |
self.o_proj = QuantizedLinear(self.num_heads * self.head_dim,
|
313 |
self.hidden_size,
|
314 |
config.quip_params['codesz'],
|
@@ -319,10 +317,6 @@ class LlamaAttention(nn.Module):
|
|
319 |
rank=config.quip_params['lora_rank'],
|
320 |
rescale_WH=config.quip_params['rescale_WH'])
|
321 |
|
322 |
-
self.register_buffer('q_scale', nn.Parameter(torch.ones(())))
|
323 |
-
self.register_buffer('k_scale', nn.Parameter(torch.ones(())))
|
324 |
-
self.register_buffer('v_scale', nn.Parameter(torch.ones(())))
|
325 |
-
self.register_buffer('o_scale', nn.Parameter(torch.ones(())))
|
326 |
self._init_rope()
|
327 |
|
328 |
def _init_rope(self):
|
@@ -370,19 +364,7 @@ class LlamaAttention(nn.Module):
|
|
370 |
if self.config.pretraining_tp > 1:
|
371 |
assert (False)
|
372 |
else:
|
373 |
-
|
374 |
-
query_states = self.q_scale * qkv_states[..., 0:(self.num_heads *
|
375 |
-
self.head_dim)]
|
376 |
-
key_states = self.k_scale * qkv_states[..., (
|
377 |
-
self.num_heads * self.head_dim):(
|
378 |
-
(self.num_heads * self.head_dim) +
|
379 |
-
(self.num_key_value_heads * self.head_dim))]
|
380 |
-
value_states = self.v_scale * qkv_states[..., (
|
381 |
-
(self.num_heads * self.head_dim) +
|
382 |
-
(self.num_key_value_heads * self.head_dim)):(
|
383 |
-
(self.num_heads * self.head_dim) +
|
384 |
-
(self.num_key_value_heads * self.head_dim) +
|
385 |
-
(self.num_key_value_heads * self.head_dim))]
|
386 |
query_states = query_states.half()
|
387 |
key_states = key_states.half()
|
388 |
value_states = value_states.half()
|
@@ -439,7 +421,7 @@ class LlamaAttention(nn.Module):
|
|
439 |
if self.config.pretraining_tp > 1:
|
440 |
assert (False)
|
441 |
else:
|
442 |
-
attn_output =
|
443 |
|
444 |
if not output_attentions:
|
445 |
attn_weights = None
|
@@ -468,19 +450,7 @@ class LlamaFlashAttention2(LlamaAttention):
|
|
468 |
output_attentions = False
|
469 |
|
470 |
bsz, q_len, _ = hidden_states.size()
|
471 |
-
|
472 |
-
query_states = self.q_scale * qkv_states[..., 0:(self.num_heads *
|
473 |
-
self.head_dim)]
|
474 |
-
key_states = self.k_scale * qkv_states[..., (
|
475 |
-
self.num_heads * self.head_dim):(
|
476 |
-
(self.num_heads * self.head_dim) +
|
477 |
-
(self.num_key_value_heads * self.head_dim))]
|
478 |
-
value_states = self.v_scale * qkv_states[..., (
|
479 |
-
(self.num_heads * self.head_dim) +
|
480 |
-
(self.num_key_value_heads * self.head_dim)):(
|
481 |
-
(self.num_heads * self.head_dim) +
|
482 |
-
(self.num_key_value_heads * self.head_dim) +
|
483 |
-
(self.num_key_value_heads * self.head_dim))]
|
484 |
query_states = query_states.half()
|
485 |
key_states = key_states.half()
|
486 |
value_states = value_states.half()
|
@@ -538,7 +508,7 @@ class LlamaFlashAttention2(LlamaAttention):
|
|
538 |
)
|
539 |
|
540 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
541 |
-
attn_output =
|
542 |
|
543 |
if not output_attentions:
|
544 |
attn_weights = None
|
|
|
48 |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
49 |
|
50 |
from lib.linear.quantized_linear import QuantizedLinear
|
51 |
+
from lib.linear.fused_quantized_linear import FusedQuantizedLinear
|
52 |
from .version import check_model_version
|
53 |
|
54 |
logger = logging.get_logger(__name__)
|
|
|
226 |
self.config = config
|
227 |
self.hidden_size = config.hidden_size
|
228 |
self.intermediate_size = config.intermediate_size
|
229 |
+
self.upgate_proj = FusedQuantizedLinear(
|
230 |
+
-1, (self.intermediate_size, self.intermediate_size),
|
231 |
+
self.hidden_size,
|
232 |
+
self.intermediate_size * 2,
|
233 |
+
config.quip_params['codesz'],
|
234 |
+
config.quip_params.get('packsz', 1),
|
235 |
+
config.quip_params.get('pack_out', False),
|
236 |
+
config.quip_params['idx_dtype'],
|
237 |
+
config.quip_params.get('codebook_version', 0),
|
238 |
+
rank=config.quip_params['lora_rank'],
|
239 |
+
rescale_WH=config.quip_params['rescale_WH'])
|
240 |
self.down_proj = QuantizedLinear(
|
241 |
self.config.quip_params['ocs_down_size'] if \
|
242 |
self.config.quip_params['outlier_channel_split'] else self.intermediate_size,
|
|
|
249 |
outlier_channel_split=self.config.quip_params['outlier_channel_split'],
|
250 |
rank=self.config.quip_params['lora_rank'],
|
251 |
rescale_WH=self.config.quip_params['rescale_WH'])
|
|
|
|
|
|
|
252 |
self.act_fn = ACT2FN[config.hidden_act]
|
253 |
|
254 |
def forward(self, x):
|
255 |
if self.config.pretraining_tp > 1:
|
256 |
raise Exception
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
+
up_proj, gate_proj = self.upgate_proj(x.to(torch.float32))
|
259 |
+
return self.down_proj(self.act_fn(gate_proj) * up_proj).half()
|
260 |
|
261 |
|
262 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
|
290 |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
291 |
f" and `num_heads`: {self.num_heads})."
|
292 |
)
|
293 |
+
|
294 |
+
self.qkv_proj = FusedQuantizedLinear(
|
295 |
+
-1,
|
296 |
+
(self.num_heads*self.head_dim,
|
297 |
+
self.num_key_value_heads*self.head_dim,
|
298 |
+
self.num_key_value_heads*self.head_dim),
|
299 |
self.hidden_size, (self.num_heads * self.head_dim) +
|
300 |
(self.num_key_value_heads * self.head_dim) +
|
301 |
(self.num_key_value_heads * self.head_dim),
|
|
|
306 |
config.quip_params.get('codebook_version', 0),
|
307 |
rank=config.quip_params['lora_rank'],
|
308 |
rescale_WH=config.quip_params['rescale_WH'])
|
309 |
+
|
310 |
self.o_proj = QuantizedLinear(self.num_heads * self.head_dim,
|
311 |
self.hidden_size,
|
312 |
config.quip_params['codesz'],
|
|
|
317 |
rank=config.quip_params['lora_rank'],
|
318 |
rescale_WH=config.quip_params['rescale_WH'])
|
319 |
|
|
|
|
|
|
|
|
|
320 |
self._init_rope()
|
321 |
|
322 |
def _init_rope(self):
|
|
|
364 |
if self.config.pretraining_tp > 1:
|
365 |
assert (False)
|
366 |
else:
|
367 |
+
query_states, key_states, value_states = self.qkv_proj(hidden_states.to(torch.float32))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
query_states = query_states.half()
|
369 |
key_states = key_states.half()
|
370 |
value_states = value_states.half()
|
|
|
421 |
if self.config.pretraining_tp > 1:
|
422 |
assert (False)
|
423 |
else:
|
424 |
+
attn_output = self.o_proj(attn_output).half()
|
425 |
|
426 |
if not output_attentions:
|
427 |
attn_weights = None
|
|
|
450 |
output_attentions = False
|
451 |
|
452 |
bsz, q_len, _ = hidden_states.size()
|
453 |
+
query_states, key_states, value_states = self.qkv_proj(hidden_states.to(torch.float32))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
454 |
query_states = query_states.half()
|
455 |
key_states = key_states.half()
|
456 |
value_states = value_states.half()
|
|
|
508 |
)
|
509 |
|
510 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
511 |
+
attn_output = self.o_proj(attn_output).half()
|
512 |
|
513 |
if not output_attentions:
|
514 |
attn_weights = None
|
quip-sharp/model/mistral.py
CHANGED
@@ -48,6 +48,7 @@ if is_flash_attn_available():
|
|
48 |
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
49 |
|
50 |
from lib.linear.quantized_linear import QuantizedLinear
|
|
|
51 |
from .version import check_model_version
|
52 |
|
53 |
logger = logging.get_logger(__name__)
|
@@ -192,15 +193,17 @@ class MistralMLP(nn.Module):
|
|
192 |
self.hidden_size = config.hidden_size
|
193 |
self.intermediate_size = config.intermediate_size
|
194 |
|
195 |
-
self.upgate_proj =
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
204 |
self.down_proj = QuantizedLinear(
|
205 |
self.config.quip_params['ocs_down_size'] if \
|
206 |
self.config.quip_params['outlier_channel_split'] else self.intermediate_size,
|
@@ -213,20 +216,11 @@ class MistralMLP(nn.Module):
|
|
213 |
outlier_channel_split=self.config.quip_params['outlier_channel_split'],
|
214 |
rank=self.config.quip_params['lora_rank'],
|
215 |
rescale_WH=self.config.quip_params['rescale_WH'])
|
216 |
-
self.register_buffer('up_scale', nn.Parameter(torch.ones(())))
|
217 |
-
self.register_buffer('gate_scale', nn.Parameter(torch.ones(())))
|
218 |
-
self.register_buffer('down_scale', nn.Parameter(torch.ones(())))
|
219 |
self.act_fn = ACT2FN[config.hidden_act]
|
220 |
|
221 |
def forward(self, x):
|
222 |
-
|
223 |
-
|
224 |
-
0:self.intermediate_size]
|
225 |
-
gate_proj = self.gate_scale * upgate_proj[
|
226 |
-
..., self.intermediate_size:(self.intermediate_size * 2)]
|
227 |
-
down_proj = self.down_scale * self.down_proj(
|
228 |
-
self.act_fn(gate_proj) * up_proj)
|
229 |
-
return down_proj.half()
|
230 |
|
231 |
|
232 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
@@ -264,7 +258,11 @@ class MistralAttention(nn.Module):
|
|
264 |
f" and `num_heads`: {self.num_heads})."
|
265 |
)
|
266 |
|
267 |
-
self.qkv_proj =
|
|
|
|
|
|
|
|
|
268 |
self.hidden_size, (self.num_heads * self.head_dim) +
|
269 |
(self.num_key_value_heads * self.head_dim) +
|
270 |
(self.num_key_value_heads * self.head_dim),
|
@@ -286,11 +284,6 @@ class MistralAttention(nn.Module):
|
|
286 |
rank=config.quip_params['lora_rank'],
|
287 |
rescale_WH=config.quip_params['rescale_WH'])
|
288 |
|
289 |
-
self.register_buffer('q_scale', nn.Parameter(torch.ones(())))
|
290 |
-
self.register_buffer('k_scale', nn.Parameter(torch.ones(())))
|
291 |
-
self.register_buffer('v_scale', nn.Parameter(torch.ones(())))
|
292 |
-
self.register_buffer('o_scale', nn.Parameter(torch.ones(())))
|
293 |
-
|
294 |
self.rotary_emb = MistralRotaryEmbedding(
|
295 |
self.head_dim,
|
296 |
max_position_embeddings=self.max_position_embeddings,
|
@@ -312,19 +305,7 @@ class MistralAttention(nn.Module):
|
|
312 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
313 |
bsz, q_len, _ = hidden_states.size()
|
314 |
|
315 |
-
|
316 |
-
query_states = self.q_scale * qkv_states[..., 0:(self.num_heads *
|
317 |
-
self.head_dim)]
|
318 |
-
key_states = self.k_scale * qkv_states[..., (
|
319 |
-
self.num_heads * self.head_dim):(
|
320 |
-
(self.num_heads * self.head_dim) +
|
321 |
-
(self.num_key_value_heads * self.head_dim))]
|
322 |
-
value_states = self.v_scale * qkv_states[..., (
|
323 |
-
(self.num_heads * self.head_dim) +
|
324 |
-
(self.num_key_value_heads * self.head_dim)):(
|
325 |
-
(self.num_heads * self.head_dim) +
|
326 |
-
(self.num_key_value_heads * self.head_dim) +
|
327 |
-
(self.num_key_value_heads * self.head_dim))]
|
328 |
query_states = query_states.half()
|
329 |
key_states = key_states.half()
|
330 |
value_states = value_states.half()
|
@@ -379,7 +360,7 @@ class MistralAttention(nn.Module):
|
|
379 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
380 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
381 |
|
382 |
-
attn_output =
|
383 |
|
384 |
if not output_attentions:
|
385 |
attn_weights = None
|
@@ -406,19 +387,7 @@ class MistralFlashAttention2(MistralAttention):
|
|
406 |
):
|
407 |
bsz, q_len, _ = hidden_states.size()
|
408 |
|
409 |
-
|
410 |
-
query_states = self.q_scale * qkv_states[..., 0:(self.num_heads *
|
411 |
-
self.head_dim)]
|
412 |
-
key_states = self.k_scale * qkv_states[..., (
|
413 |
-
self.num_heads * self.head_dim):(
|
414 |
-
(self.num_heads * self.head_dim) +
|
415 |
-
(self.num_key_value_heads * self.head_dim))]
|
416 |
-
value_states = self.v_scale * qkv_states[..., (
|
417 |
-
(self.num_heads * self.head_dim) +
|
418 |
-
(self.num_key_value_heads * self.head_dim)):(
|
419 |
-
(self.num_heads * self.head_dim) +
|
420 |
-
(self.num_key_value_heads * self.head_dim) +
|
421 |
-
(self.num_key_value_heads * self.head_dim))]
|
422 |
query_states = query_states.half()
|
423 |
key_states = key_states.half()
|
424 |
value_states = value_states.half()
|
@@ -517,7 +486,7 @@ class MistralFlashAttention2(MistralAttention):
|
|
517 |
)
|
518 |
|
519 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
520 |
-
attn_output =
|
521 |
|
522 |
if not output_attentions:
|
523 |
attn_weights = None
|
|
|
48 |
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
49 |
|
50 |
from lib.linear.quantized_linear import QuantizedLinear
|
51 |
+
from lib.linear.fused_quantized_linear import FusedQuantizedLinear
|
52 |
from .version import check_model_version
|
53 |
|
54 |
logger = logging.get_logger(__name__)
|
|
|
193 |
self.hidden_size = config.hidden_size
|
194 |
self.intermediate_size = config.intermediate_size
|
195 |
|
196 |
+
self.upgate_proj = FusedQuantizedLinear(
|
197 |
+
-1, (self.intermediate_size, self.intermediate_size),
|
198 |
+
self.hidden_size,
|
199 |
+
self.intermediate_size * 2,
|
200 |
+
config.quip_params['codesz'],
|
201 |
+
config.quip_params.get('packsz', 1),
|
202 |
+
config.quip_params.get('pack_out', False),
|
203 |
+
config.quip_params['idx_dtype'],
|
204 |
+
config.quip_params.get('codebook_version', 0),
|
205 |
+
rank=config.quip_params['lora_rank'],
|
206 |
+
rescale_WH=config.quip_params['rescale_WH'])
|
207 |
self.down_proj = QuantizedLinear(
|
208 |
self.config.quip_params['ocs_down_size'] if \
|
209 |
self.config.quip_params['outlier_channel_split'] else self.intermediate_size,
|
|
|
216 |
outlier_channel_split=self.config.quip_params['outlier_channel_split'],
|
217 |
rank=self.config.quip_params['lora_rank'],
|
218 |
rescale_WH=self.config.quip_params['rescale_WH'])
|
|
|
|
|
|
|
219 |
self.act_fn = ACT2FN[config.hidden_act]
|
220 |
|
221 |
def forward(self, x):
|
222 |
+
up_proj, gate_proj = self.upgate_proj(x.to(torch.float32))
|
223 |
+
return self.down_proj(self.act_fn(gate_proj) * up_proj).half()
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
|
226 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
|
258 |
f" and `num_heads`: {self.num_heads})."
|
259 |
)
|
260 |
|
261 |
+
self.qkv_proj = FusedQuantizedLinear(
|
262 |
+
-1,
|
263 |
+
(self.num_heads*self.head_dim,
|
264 |
+
self.num_key_value_heads*self.head_dim,
|
265 |
+
self.num_key_value_heads*self.head_dim),
|
266 |
self.hidden_size, (self.num_heads * self.head_dim) +
|
267 |
(self.num_key_value_heads * self.head_dim) +
|
268 |
(self.num_key_value_heads * self.head_dim),
|
|
|
284 |
rank=config.quip_params['lora_rank'],
|
285 |
rescale_WH=config.quip_params['rescale_WH'])
|
286 |
|
|
|
|
|
|
|
|
|
|
|
287 |
self.rotary_emb = MistralRotaryEmbedding(
|
288 |
self.head_dim,
|
289 |
max_position_embeddings=self.max_position_embeddings,
|
|
|
305 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
306 |
bsz, q_len, _ = hidden_states.size()
|
307 |
|
308 |
+
query_states, key_states, value_states = self.qkv_proj(hidden_states.to(torch.float32))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
query_states = query_states.half()
|
310 |
key_states = key_states.half()
|
311 |
value_states = value_states.half()
|
|
|
360 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
361 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
362 |
|
363 |
+
attn_output = self.o_proj(attn_output).half()
|
364 |
|
365 |
if not output_attentions:
|
366 |
attn_weights = None
|
|
|
387 |
):
|
388 |
bsz, q_len, _ = hidden_states.size()
|
389 |
|
390 |
+
query_states, key_states, value_states = self.qkv_proj(hidden_states.to(torch.float32))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
query_states = query_states.half()
|
392 |
key_states = key_states.half()
|
393 |
value_states = value_states.half()
|
|
|
486 |
)
|
487 |
|
488 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
489 |
+
attn_output = self.o_proj(attn_output).half()
|
490 |
|
491 |
if not output_attentions:
|
492 |
attn_weights = None
|
quip-sharp/model/version.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
-
MODEL_VERSION =
|
2 |
|
3 |
def check_model_version(test):
|
4 |
if test != MODEL_VERSION:
|
5 |
raise Exception(
|
6 |
f"Saved model version ({test}) does not match the "\
|
7 |
f"source code model version ({MODEL_VERSION}). "\
|
8 |
-
"Please pull the latest code
|
|
|
1 |
+
MODEL_VERSION = 1
|
2 |
|
3 |
def check_model_version(test):
|
4 |
if test != MODEL_VERSION:
|
5 |
raise Exception(
|
6 |
f"Saved model version ({test}) does not match the "\
|
7 |
f"source code model version ({MODEL_VERSION}). "\
|
8 |
+
"Please pull the latest code or model checkpoints.")
|
quip-sharp/quantize_llama.py
CHANGED
@@ -26,8 +26,8 @@ parser.add_argument('--num_cpu_threads', default=8, type=int)
|
|
26 |
parser.add_argument('--batch_size', default=8, type=int)
|
27 |
parser.add_argument('--devset_size', default=64, type=int)
|
28 |
parser.add_argument('--ctx_size', default=2048, type=int)
|
29 |
-
parser.add_argument('--save_path',
|
30 |
-
parser.add_argument('--hessian_path',
|
31 |
parser.add_argument('--base_model', default='meta-llama/Llama-2-70b-hf', type=str)
|
32 |
parser.add_argument('--sigma_reg', default=1e-2, type=float)
|
33 |
parser.add_argument('--sigma_reg2', default=1e-2, type=float)
|
@@ -286,7 +286,7 @@ def main(args):
|
|
286 |
all_config['model_config'].quip_params['ocs_down_size'] = args.ocs_down_size
|
287 |
torch.save(all_config, os.path.join(args.save_path, 'config.pt'))
|
288 |
|
289 |
-
tokenizer = AutoTokenizer.from_pretrained(args.base_model
|
290 |
tokenizer.pad_token = tokenizer.eos_token
|
291 |
glog.info('loaded model')
|
292 |
|
|
|
26 |
parser.add_argument('--batch_size', default=8, type=int)
|
27 |
parser.add_argument('--devset_size', default=64, type=int)
|
28 |
parser.add_argument('--ctx_size', default=2048, type=int)
|
29 |
+
parser.add_argument('--save_path', type=str)
|
30 |
+
parser.add_argument('--hessian_path', type=str)
|
31 |
parser.add_argument('--base_model', default='meta-llama/Llama-2-70b-hf', type=str)
|
32 |
parser.add_argument('--sigma_reg', default=1e-2, type=float)
|
33 |
parser.add_argument('--sigma_reg2', default=1e-2, type=float)
|
|
|
286 |
all_config['model_config'].quip_params['ocs_down_size'] = args.ocs_down_size
|
287 |
torch.save(all_config, os.path.join(args.save_path, 'config.pt'))
|
288 |
|
289 |
+
tokenizer = AutoTokenizer.from_pretrained(args.base_model)
|
290 |
tokenizer.pad_token = tokenizer.eos_token
|
291 |
glog.info('loaded model')
|
292 |
|
quip-sharp/quiptools/build/lib.linux-x86_64-cpython-310/quiptools_cuda.cpython-310-x86_64-linux-gnu.so
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b869e88b6457109857b32ebb2ba424ebb6cdc53ecc3f856ef881709a4fbccf85
|
3 |
+
size 12982144
|
quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/.ninja_deps
CHANGED
Binary files a/quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/.ninja_deps and b/quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/.ninja_deps differ
|
|
quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/.ninja_log
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
# ninja log v5
|
2 |
-
0
|
3 |
-
|
4 |
-
|
5 |
-
8 43545 1703587732366665742 /run/media/knut/HD/text-generation-webui/repositories/quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/quiptools.o f601b9f154f8bde0
|
6 |
-
8 47187 1703587736006769314 /run/media/knut/HD/text-generation-webui/repositories/quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/quiptools_e8p_gemv.o 9d441ce55de572ae
|
|
|
1 |
# ninja log v5
|
2 |
+
0 19060 1704135981196240899 /run/media/knut/HD/text-generation-webui/repositories/quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/quiptools_wrapper.o 1b1606004175d38f
|
3 |
+
0 43897 1704136006046927545 /run/media/knut/HD/text-generation-webui/repositories/quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/quiptools.o f601b9f154f8bde0
|
4 |
+
0 46532 1704136008677000213 /run/media/knut/HD/text-generation-webui/repositories/quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/quiptools_e8p_gemv.o 9d441ce55de572ae
|
|
|
|
quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/quiptools.o
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2174288
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:874d7a979e49a3dcecaec7c56b4072f8f055e60a4560f5225ad1c385ce38607c
|
3 |
size 2174288
|
quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/quiptools_e8p_gemv.o
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f237dcab2ca8896deac1088c1857f78235ba149f26b26b55a3761832fe08c1f6
|
3 |
+
size 5448600
|
quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/quiptools_wrapper.o
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7aa0a52748df5ca8b4e93a471bf7f3b491676c8c4a2be257855f08b1fa6c7f3
|
3 |
+
size 6729784
|
quip-sharp/quiptools/dist/quiptools_cuda-0.0.0-py3.10-linux-x86_64.egg
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52d0c3eab47c2b08bed9da2d4a6e26c6ebb373192077b27eb4162f01d82a4237
|
3 |
+
size 4181938
|
quip-sharp/quiptools/quiptools_cuda.egg-info/SOURCES.txt
CHANGED
@@ -1,12 +1,7 @@
|
|
1 |
-
.quiptools.cu.swp
|
2 |
-
benchmark_e8p.py
|
3 |
-
error.txt
|
4 |
quiptools.cu
|
5 |
quiptools_e8p_gemv.cu
|
6 |
quiptools_wrapper.cpp
|
7 |
setup.py
|
8 |
-
test_d4.py
|
9 |
-
test_e8p.py
|
10 |
quiptools_cuda.egg-info/PKG-INFO
|
11 |
quiptools_cuda.egg-info/SOURCES.txt
|
12 |
quiptools_cuda.egg-info/dependency_links.txt
|
|
|
|
|
|
|
|
|
1 |
quiptools.cu
|
2 |
quiptools_e8p_gemv.cu
|
3 |
quiptools_wrapper.cpp
|
4 |
setup.py
|
|
|
|
|
5 |
quiptools_cuda.egg-info/PKG-INFO
|
6 |
quiptools_cuda.egg-info/SOURCES.txt
|
7 |
quiptools_cuda.egg-info/dependency_links.txt
|
quip-sharp/quiptools/quiptools_e8p_gemv.cu
CHANGED
@@ -9,6 +9,8 @@
|
|
9 |
#include <cuda_fp16.h>
|
10 |
#include <mma.h>
|
11 |
|
|
|
|
|
12 |
#include <ATen/ATen.h>
|
13 |
#include <ATen/Context.h>
|
14 |
#include <ATen/Dispatch.h>
|
@@ -40,222 +42,235 @@ __host__ static inline void gpuAssert(cudaError_t code, const char *file, int li
|
|
40 |
}
|
41 |
}
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
|
47 |
-
__device__ static inline uint64_t decode8weights(
|
48 |
-
uint16_t weight_compressed,
|
49 |
-
const int64_t *__restrict__ codebook_abs
|
50 |
-
) {
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
uint32_t packed[2];
|
58 |
-
memcpy(packed, &packed_, sizeof(packed));
|
59 |
-
|
60 |
-
// TODO: optimize this by redefining the bit pattern
|
61 |
-
uint32_t parity = __popc(packed[0] & 0x04040404) ^ __popc(packed[1]&0x04040404);
|
62 |
-
uint8_t sign_vec = bits_sign | ((__popc(bits_sign) ^ parity) << 7);
|
63 |
-
uint32_t decoded_sign[2];
|
64 |
-
decoded_sign[0] = sign_vec * 0x08040201ll;
|
65 |
-
decoded_sign[1] = sign_vec * 0x80402010ll;
|
66 |
-
decoded_sign[0] &= 0x80808080;
|
67 |
-
decoded_sign[1] &= 0x80808080;
|
68 |
-
decoded_sign[0] >>= 7;
|
69 |
-
decoded_sign[1] >>= 7;
|
70 |
-
decoded_sign[0] *= 255 - 3;
|
71 |
-
decoded_sign[1] *= 255 - 3;
|
72 |
-
packed[0] ^= decoded_sign[0];
|
73 |
-
packed[1] ^= decoded_sign[1];
|
74 |
-
packed[0] |= 0x01010101;
|
75 |
-
packed[1] |= 0x01010101;
|
76 |
-
packed[0] -= bit_shift * 0x02020202;
|
77 |
-
packed[1] -= bit_shift * 0x02020202;
|
78 |
-
|
79 |
-
memcpy(&packed_, packed, sizeof(packed));
|
80 |
-
|
81 |
-
return packed_;
|
82 |
}
|
83 |
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
/*
|
86 |
-
llama 2 70B:
|
87 |
-
M N K
|
88 |
-
1 8192 8192
|
89 |
-
1 57344 8192
|
90 |
-
1 8192 28672
|
91 |
-
1 10240 8192
|
92 |
-
*/
|
93 |
-
template <typename scalar_t>
|
94 |
__global__ static void
|
95 |
-
__launch_bounds__(
|
96 |
-
|
97 |
-
|
98 |
-
const
|
99 |
-
const
|
100 |
-
const
|
101 |
-
|
102 |
-
|
103 |
-
int64_t K
|
104 |
) {
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
//
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
}
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
}
|
220 |
-
#endif
|
221 |
-
}
|
222 |
-
accumulator *= 0.25;
|
223 |
-
|
224 |
-
for (int offset = WARP_SIZE/2; offset > 0; offset /= 2) {
|
225 |
-
// apparently c10::Half does arithmetic operations in float32?
|
226 |
-
// https://github.com/pytorch/pytorch/blob/0bd4d1f4ab38d3088de8aa5fbba35427b42d118e/c10/util/Half.h#L4C58-L6C80
|
227 |
-
if constexpr (std::is_same<scalar_t, c10::Half>::value) {
|
228 |
-
accumulator += __shfl_down_sync(0xFFFFFFFF, __float2half(accumulator), offset);
|
229 |
-
} else {
|
230 |
-
accumulator += __shfl_down_sync(0xFFFFFFFF, accumulator, offset);
|
231 |
-
}
|
232 |
}
|
|
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
__syncthreads();
|
238 |
-
if (warpId % local_k == 0) {
|
239 |
-
scalar_t local_accum = 0;
|
240 |
-
for (int64_t accum_i = 0; accum_i < local_k; accum_i++) {
|
241 |
-
local_accum += accum_scratch[warpId / local_k * local_k + accum_i];
|
242 |
-
}
|
243 |
-
atomicAdd(output + m * N + n * unroll_n + unroll_n_i, local_accum);
|
244 |
-
}
|
245 |
-
} else {
|
246 |
-
__syncthreads();
|
247 |
-
}
|
248 |
-
} else {
|
249 |
-
if (laneId == 0) {
|
250 |
-
atomicAdd(output + m * N + n * unroll_n + unroll_n_i, accumulator);
|
251 |
-
}
|
252 |
-
}
|
253 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
}
|
255 |
}
|
256 |
|
257 |
|
258 |
-
__host__ extern torch::Tensor
|
259 |
torch::Tensor x,
|
260 |
torch::Tensor weights_compressed,
|
261 |
torch::Tensor codebook_abs
|
@@ -265,47 +280,306 @@ __host__ extern torch::Tensor decode_matmul_e8p(
|
|
265 |
CHECK_INPUT(weights_compressed);
|
266 |
CHECK_INPUT(codebook_abs);
|
267 |
|
268 |
-
TORCH_CHECK(
|
269 |
-
TORCH_CHECK(
|
270 |
-
TORCH_CHECK(
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
TORCH_CHECK(codebook_abs.size(-1) == 256);
|
272 |
|
273 |
-
int64_t
|
274 |
-
int64_t N = weights_compressed.size(-2);
|
275 |
int64_t K = x.size(-1);
|
276 |
-
//printf("%lld %lld %lld\n", M, N, K);
|
277 |
|
278 |
-
TORCH_CHECK(K %
|
|
|
|
|
|
|
|
|
279 |
|
280 |
at::DeviceGuard guard(x.device());
|
281 |
torch::TensorOptions options = torch::TensorOptions()
|
282 |
-
.dtype(
|
283 |
.layout(torch::kStrided)
|
284 |
.device(torch::kCUDA)
|
285 |
.requires_grad(false);
|
286 |
-
torch::Tensor output = torch::zeros(std::vector<int64_t>{
|
287 |
|
288 |
cudaDeviceProp deviceProp;
|
289 |
cudaGetDeviceProperties(&deviceProp, x.get_device());
|
290 |
-
int64_t grid_size = static_cast<int64_t>(
|
291 |
at::cuda::CUDAStream stream = at::cuda::getCurrentCUDAStream();
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
M,
|
305 |
-
N,
|
306 |
-
K);
|
307 |
-
gpuErrchk(cudaPeekAtLastError());
|
308 |
-
});
|
309 |
|
310 |
return output;
|
311 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
#include <cuda_fp16.h>
|
10 |
#include <mma.h>
|
11 |
|
12 |
+
#include <cuda_pipeline.h>
|
13 |
+
|
14 |
#include <ATen/ATen.h>
|
15 |
#include <ATen/Context.h>
|
16 |
#include <ATen/Dispatch.h>
|
|
|
42 |
}
|
43 |
}
|
44 |
|
45 |
+
__device__ static inline uint32_t add_as_half2(uint32_t x, uint32_t y) {
|
46 |
+
uint32_t z;
|
47 |
+
asm("add.f16x2 %0,%1,%2;" : "=r"(z) : "r"(x), "r"(y));
|
48 |
+
return z;
|
49 |
+
}
|
50 |
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
__device__ static inline uint32_t mask_lop3(uint32_t x, uint32_t m0, uint32_t m1) {
|
53 |
+
uint32_t y;
|
54 |
+
asm("lop3.b32 %0, %1, %2, %3, 0xEA;" : "=r"(y) : "r"(x), "r"(m0), "r"(m1));
|
55 |
+
return y;
|
56 |
+
// return (x & m0) | m1;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
}
|
58 |
|
59 |
+
#define BASE_OFFSET 0xd080d080
|
60 |
+
#define XMASK 0x00f000f0
|
61 |
+
#define WMASK 0x50085008
|
62 |
+
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
__global__ static void
|
65 |
+
// __launch_bounds__(1024, 1024)
|
66 |
+
decode_matvec_e8p_kernel(
|
67 |
+
float *__restrict__ output,
|
68 |
+
const uint2 *__restrict__ input,
|
69 |
+
const uint2 *__restrict__ weights_compressed,
|
70 |
+
const uint32_t *__restrict__ codebook_abs,
|
71 |
+
int N,
|
72 |
+
int K
|
|
|
73 |
) {
|
74 |
+
int warpId = threadIdx.y;
|
75 |
+
int laneId = threadIdx.x;
|
76 |
+
|
77 |
+
// __shared__ float sum_scratch[16*32];
|
78 |
+
|
79 |
+
// __shared__ uint32_t codebook_local[256*32];
|
80 |
+
// for (int icb = warpId; icb < 256; icb += 32) {
|
81 |
+
// codebook_local[icb*32 + laneId] = codebook_abs[icb];
|
82 |
+
// }
|
83 |
+
// __syncthreads();
|
84 |
+
|
85 |
+
__shared__ uint2 shared_weights[1024*2];
|
86 |
+
|
87 |
+
for (int iin = blockIdx.x; iin < (N >> 4); iin += gridDim.x) {
|
88 |
+
|
89 |
+
float z0 = 0.0;
|
90 |
+
float z1 = 0.0;
|
91 |
+
float z2 = 0.0;
|
92 |
+
float z3 = 0.0;
|
93 |
+
|
94 |
+
// int shwo = laneId + 32*warpId;
|
95 |
+
|
96 |
+
// __pipeline_memcpy_async(shared_weights + shwo, weights_compressed + laneId + 32*warpId + 1024*0 + (K >> 1)*iin, 8);
|
97 |
+
// __pipeline_commit();
|
98 |
+
|
99 |
+
for (int iik = warpId; iik < (K >> 6); iik += 32) {
|
100 |
+
// if (iik + 1 < (K >> 11)) {
|
101 |
+
// __pipeline_memcpy_async(shared_weights + (shwo ^ 1024), weights_compressed + laneId + 32*iik + 1024 + (K >> 1)*iin, 8);
|
102 |
+
// __pipeline_commit();
|
103 |
+
// __pipeline_wait_prior(1);
|
104 |
+
// shwo = shwo ^ 1024;
|
105 |
+
// }
|
106 |
+
// else {
|
107 |
+
// __pipeline_wait_prior(0);
|
108 |
+
// }
|
109 |
+
|
110 |
+
// uint2 w_compr = shared_weights[shwo]; // weights_compressed[laneId + 32*warpId + 1024*iik + (K >> 1)*iin];
|
111 |
+
uint2 w_compr = weights_compressed[laneId + 32*iik + (K >> 1)*iin];
|
112 |
+
uint32_t a = w_compr.x;
|
113 |
+
uint32_t b = w_compr.y;
|
114 |
+
|
115 |
+
uint32_t s = b;
|
116 |
+
s = s ^ (s >> 4);
|
117 |
+
s = s ^ (s >> 8);
|
118 |
+
s = s ^ (s >> 16);
|
119 |
+
uint32_t sb = (s & 15);
|
120 |
+
s = b ^ sb;
|
121 |
+
sb = sb | (sb << 16);
|
122 |
+
|
123 |
+
uint32_t input_to_warp = ((const uint32_t*)(&input[16*iik]))[laneId];
|
124 |
+
uint32_t shifted_laneId = (laneId & 3) << 3;
|
125 |
+
|
126 |
+
/// BLOCK 01
|
127 |
+
{
|
128 |
+
uint32_t x = codebook_abs[(a >> 0) & 255];
|
129 |
+
x = x ^ ((s & 0x11111111) * 14);
|
130 |
+
|
131 |
+
uint32_t o = BASE_OFFSET | ((sb & 0x00010001) << 4);
|
132 |
+
|
133 |
+
uint32_t w00 = add_as_half2(mask_lop3(x << 4, XMASK, WMASK), o);
|
134 |
+
uint32_t w01 = add_as_half2(mask_lop3(x << 0, XMASK, WMASK), o);
|
135 |
+
uint32_t w02 = add_as_half2(mask_lop3(x >> 4, XMASK, WMASK), o);
|
136 |
+
uint32_t w03 = add_as_half2(mask_lop3(x >> 8, XMASK, WMASK), o);
|
137 |
+
|
138 |
+
x = codebook_abs[(a >> 8) & 255];
|
139 |
+
x = x ^ ((s & 0x22222222) * 7);
|
140 |
+
|
141 |
+
o = BASE_OFFSET | ((sb & 0x00020002) << 3);
|
142 |
+
|
143 |
+
uint32_t w10 = add_as_half2(mask_lop3(x << 4, XMASK, WMASK), o);
|
144 |
+
uint32_t w11 = add_as_half2(mask_lop3(x << 0, XMASK, WMASK), o);
|
145 |
+
uint32_t w12 = add_as_half2(mask_lop3(x >> 4, XMASK, WMASK), o);
|
146 |
+
uint32_t w13 = add_as_half2(mask_lop3(x >> 8, XMASK, WMASK), o);
|
147 |
+
|
148 |
+
// uint2 x_in = input[0 + (laneId & 3)*4 + 16*warpId + 16*32*iik];
|
149 |
+
// uint32_t x_in0 = x_in.x;
|
150 |
+
// uint32_t x_in1 = x_in.y;
|
151 |
+
|
152 |
+
uint32_t x_in0 = __shfl_sync(FULL_MASK, input_to_warp, shifted_laneId | 0);
|
153 |
+
uint32_t x_in1 = __shfl_sync(FULL_MASK, input_to_warp, shifted_laneId | 1);
|
154 |
+
|
155 |
+
asm(
|
156 |
+
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
|
157 |
+
" { %0, %1, %2, %3 },"
|
158 |
+
" { %4, %5, %6, %7 },"
|
159 |
+
" { %8, %9 },"
|
160 |
+
" { %0, %1, %2, %3 };"
|
161 |
+
: "+f"(z0), "+f"(z1), "+f"(z2), "+f"(z3)
|
162 |
+
: "r"(w00), "r"(w10), "r"(w01), "r"(w11),
|
163 |
+
"r"(x_in0), "r"(x_in1)
|
164 |
+
);
|
165 |
+
|
166 |
+
|
167 |
+
// x_in = input[1 + (laneId & 3)*4 + 16*warpId + 16*32*iik];
|
168 |
+
// x_in0 = x_in.x;
|
169 |
+
// x_in1 = x_in.y;
|
170 |
+
|
171 |
+
x_in0 = __shfl_sync(FULL_MASK, input_to_warp, shifted_laneId | 2);
|
172 |
+
x_in1 = __shfl_sync(FULL_MASK, input_to_warp, shifted_laneId | 3);
|
173 |
+
|
174 |
+
asm(
|
175 |
+
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
|
176 |
+
" { %0, %1, %2, %3 },"
|
177 |
+
" { %4, %5, %6, %7 },"
|
178 |
+
" { %8, %9 },"
|
179 |
+
" { %0, %1, %2, %3 };"
|
180 |
+
: "+f"(z0), "+f"(z1), "+f"(z2), "+f"(z3)
|
181 |
+
: "r"(w02), "r"(w12), "r"(w03), "r"(w13),
|
182 |
+
"r"(x_in0), "r"(x_in1)
|
183 |
+
);
|
184 |
}
|
185 |
+
/// BLOCK 23
|
186 |
+
{
|
187 |
+
uint32_t x = codebook_abs[(a >> 16) & 255];
|
188 |
+
s = s >> 2;
|
189 |
+
x = x ^ ((s & 0x11111111) * 14);
|
190 |
+
|
191 |
+
uint32_t o = BASE_OFFSET | ((sb & 0x00040004) << 2);
|
192 |
+
|
193 |
+
uint32_t w00 = add_as_half2(mask_lop3(x << 4, XMASK, WMASK), o);
|
194 |
+
uint32_t w01 = add_as_half2(mask_lop3(x << 0, XMASK, WMASK), o);
|
195 |
+
uint32_t w02 = add_as_half2(mask_lop3(x >> 4, XMASK, WMASK), o);
|
196 |
+
uint32_t w03 = add_as_half2(mask_lop3(x >> 8, XMASK, WMASK), o);
|
197 |
+
|
198 |
+
x = codebook_abs[(a >> 24) & 255];
|
199 |
+
x = x ^ ((s & 0x22222222) * 7);
|
200 |
+
|
201 |
+
o = BASE_OFFSET | ((sb & 0x00080008) << 1);
|
202 |
+
|
203 |
+
uint32_t w10 = add_as_half2(mask_lop3(x << 4, XMASK, WMASK), o);
|
204 |
+
uint32_t w11 = add_as_half2(mask_lop3(x << 0, XMASK, WMASK), o);
|
205 |
+
uint32_t w12 = add_as_half2(mask_lop3(x >> 4, XMASK, WMASK), o);
|
206 |
+
uint32_t w13 = add_as_half2(mask_lop3(x >> 8, XMASK, WMASK), o);
|
207 |
+
|
208 |
+
|
209 |
+
// uint2 x_in = input[2 + (laneId & 3)*4 + 16*warpId + 16*32*iik];
|
210 |
+
// uint32_t x_in0 = x_in.x;
|
211 |
+
// uint32_t x_in1 = x_in.y;
|
212 |
+
|
213 |
+
uint32_t x_in0 = __shfl_sync(FULL_MASK, input_to_warp, shifted_laneId | 4);
|
214 |
+
uint32_t x_in1 = __shfl_sync(FULL_MASK, input_to_warp, shifted_laneId | 5);
|
215 |
+
|
216 |
+
asm(
|
217 |
+
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
|
218 |
+
" { %0, %1, %2, %3 },"
|
219 |
+
" { %4, %5, %6, %7 },"
|
220 |
+
" { %8, %9 },"
|
221 |
+
" { %0, %1, %2, %3 };"
|
222 |
+
: "+f"(z0), "+f"(z1), "+f"(z2), "+f"(z3)
|
223 |
+
: "r"(w00), "r"(w10), "r"(w01), "r"(w11),
|
224 |
+
"r"(x_in0), "r"(x_in1)
|
225 |
+
);
|
226 |
+
|
227 |
+
|
228 |
+
// x_in = input[3 + (laneId & 3)*4 + 16*warpId + 16*32*iik];
|
229 |
+
// x_in0 = x_in.x;
|
230 |
+
// x_in1 = x_in.y;
|
231 |
+
|
232 |
+
x_in0 = __shfl_sync(FULL_MASK, input_to_warp, shifted_laneId | 6);
|
233 |
+
x_in1 = __shfl_sync(FULL_MASK, input_to_warp, shifted_laneId | 7);
|
234 |
+
|
235 |
+
asm(
|
236 |
+
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
|
237 |
+
" { %0, %1, %2, %3 },"
|
238 |
+
" { %4, %5, %6, %7 },"
|
239 |
+
" { %8, %9 },"
|
240 |
+
" { %0, %1, %2, %3 };"
|
241 |
+
: "+f"(z0), "+f"(z1), "+f"(z2), "+f"(z3)
|
242 |
+
: "r"(w02), "r"(w12), "r"(w03), "r"(w13),
|
243 |
+
"r"(x_in0), "r"(x_in1)
|
244 |
+
);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
}
|
246 |
+
}
|
247 |
|
248 |
+
// we produced 16 outputs, so only 16 threads
|
249 |
+
if ((laneId & 1) == 0) {
|
250 |
+
atomicAdd(output + (iin << 4) + (laneId >> 1), (laneId & 2) ? z2 : z0);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
}
|
252 |
+
|
253 |
+
// if ((laneId & 3) == 0) {
|
254 |
+
// sum_scratch[warpId + ((laneId >> 1) + 0) * 32] = z0;
|
255 |
+
// sum_scratch[warpId + ((laneId >> 1) + 1) * 32] = z2;
|
256 |
+
// }
|
257 |
+
// __syncthreads();
|
258 |
+
|
259 |
+
// // load and sum
|
260 |
+
// if (warpId < 16) {
|
261 |
+
// float acc = sum_scratch[laneId + warpId*32];
|
262 |
+
// for (int offset = 16; offset > 0; offset /= 2) {
|
263 |
+
// acc += __shfl_down_sync(FULL_MASK, acc, offset);
|
264 |
+
// }
|
265 |
+
// if (laneId == 0) {
|
266 |
+
// output[(iin << 4) + warpId] = acc;
|
267 |
+
// }
|
268 |
+
// }
|
269 |
}
|
270 |
}
|
271 |
|
272 |
|
273 |
+
__host__ extern torch::Tensor decode_matvec_e8p(
|
274 |
torch::Tensor x,
|
275 |
torch::Tensor weights_compressed,
|
276 |
torch::Tensor codebook_abs
|
|
|
280 |
CHECK_INPUT(weights_compressed);
|
281 |
CHECK_INPUT(codebook_abs);
|
282 |
|
283 |
+
TORCH_CHECK(x.dim() == 1);
|
284 |
+
TORCH_CHECK(weights_compressed.dim() == 4);
|
285 |
+
TORCH_CHECK(weights_compressed.size(3) == 4);
|
286 |
+
TORCH_CHECK(weights_compressed.size(2) == 8);
|
287 |
+
TORCH_CHECK(codebook_abs.dim() == 1);
|
288 |
+
TORCH_CHECK(x.scalar_type() == torch::kFloat16);
|
289 |
+
TORCH_CHECK(weights_compressed.scalar_type() == torch::kInt64);
|
290 |
+
TORCH_CHECK(codebook_abs.scalar_type() == torch::kInt32);
|
291 |
+
TORCH_CHECK(x.size(-1) == weights_compressed.size(1) << 6);
|
292 |
TORCH_CHECK(codebook_abs.size(-1) == 256);
|
293 |
|
294 |
+
int64_t N = weights_compressed.size(0) * 16;
|
|
|
295 |
int64_t K = x.size(-1);
|
|
|
296 |
|
297 |
+
TORCH_CHECK(K % 64 == 0, "K is not divisible by 64");
|
298 |
+
TORCH_CHECK(N % 16 == 0, "N is not divisible by 16");
|
299 |
+
|
300 |
+
TORCH_CHECK(K < 65536, "K is not too large");
|
301 |
+
TORCH_CHECK(N < 65536, "N is not too large");
|
302 |
|
303 |
at::DeviceGuard guard(x.device());
|
304 |
torch::TensorOptions options = torch::TensorOptions()
|
305 |
+
.dtype(torch::kFloat32)
|
306 |
.layout(torch::kStrided)
|
307 |
.device(torch::kCUDA)
|
308 |
.requires_grad(false);
|
309 |
+
torch::Tensor output = torch::zeros(std::vector<int64_t>{N}, options);
|
310 |
|
311 |
cudaDeviceProp deviceProp;
|
312 |
cudaGetDeviceProperties(&deviceProp, x.get_device());
|
313 |
+
int64_t grid_size = static_cast<int64_t>(deviceProp.multiProcessorCount);
|
314 |
at::cuda::CUDAStream stream = at::cuda::getCurrentCUDAStream();
|
315 |
|
316 |
+
const dim3 block_size(32,32);
|
317 |
+
|
318 |
+
decode_matvec_e8p_kernel<<<grid_size, block_size, 0, stream>>>(
|
319 |
+
output.data_ptr<float>(),
|
320 |
+
(const uint2*)x.data_ptr<c10::Half>(),
|
321 |
+
(const uint2*)weights_compressed.data_ptr<int64_t>(),
|
322 |
+
(const uint32_t*)codebook_abs.data_ptr<int32_t>(),
|
323 |
+
N,
|
324 |
+
K);
|
325 |
+
|
326 |
+
gpuErrchk(cudaPeekAtLastError());
|
|
|
|
|
|
|
|
|
|
|
327 |
|
328 |
return output;
|
329 |
}
|
330 |
+
|
331 |
+
|
332 |
+
|
333 |
+
__global__ static void
|
334 |
+
test_tc_kernel(float *__restrict__ output) {
|
335 |
+
int laneId = threadIdx.x;
|
336 |
+
|
337 |
+
uint32_t w0 = (laneId == 0) ? 0x3C003C00 : 0x00000000;
|
338 |
+
uint32_t w1 = 0x00000000;
|
339 |
+
uint32_t w2 = 0x00000000;
|
340 |
+
uint32_t w3 = 0x00000000;
|
341 |
+
|
342 |
+
uint32_t x0 = (laneId == 0) ? 0x3C003C00 : 0x00000000;
|
343 |
+
uint32_t x1 = 0x00000000;
|
344 |
+
|
345 |
+
float z0 = 0.0;
|
346 |
+
float z1 = 0.0;
|
347 |
+
float z2 = 0.0;
|
348 |
+
float z3 = 0.0;
|
349 |
+
|
350 |
+
asm(
|
351 |
+
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
|
352 |
+
" { %0, %1, %2, %3 },"
|
353 |
+
" { %4, %5, %6, %7 },"
|
354 |
+
" { %8, %9 },"
|
355 |
+
" { %0, %1, %2, %3 };"
|
356 |
+
: "+f"(z0), "+f"(z1), "+f"(z2), "+f"(z3)
|
357 |
+
: "r"(w0), "r"(w1), "r"(w2), "r"(w3),
|
358 |
+
"r"(x0), "r"(x1)
|
359 |
+
);
|
360 |
+
|
361 |
+
output[laneId*4 + 0] = z0;
|
362 |
+
output[laneId*4 + 1] = z1;
|
363 |
+
output[laneId*4 + 2] = z2;
|
364 |
+
output[laneId*4 + 3] = z3;
|
365 |
+
}
|
366 |
+
|
367 |
+
__host__ extern torch::Tensor test_tc() {
|
368 |
+
|
369 |
+
torch::TensorOptions options = torch::TensorOptions()
|
370 |
+
.dtype(torch::kFloat32)
|
371 |
+
.layout(torch::kStrided)
|
372 |
+
.device(torch::kCUDA)
|
373 |
+
.requires_grad(false);
|
374 |
+
torch::Tensor output = torch::zeros(std::vector<int64_t>{32*4}, options);
|
375 |
+
|
376 |
+
test_tc_kernel<<<1, 32>>>(output.data_ptr<float>());
|
377 |
+
|
378 |
+
gpuErrchk(cudaPeekAtLastError());
|
379 |
+
|
380 |
+
return output;
|
381 |
+
}
|
382 |
+
|
383 |
+
|
384 |
+
|
385 |
+
|
386 |
+
__global__ static void
|
387 |
+
test_codebook_expand_kernel(uint32_t *__restrict__ output, const uint32_t *__restrict__ codebook_abs) {
|
388 |
+
uint32_t a = threadIdx.x;
|
389 |
+
uint32_t b = 0;
|
390 |
+
|
391 |
+
for (int i = 0; i < 8; i++) {
|
392 |
+
b |= (((blockIdx.x >> i) & 1) << (4*i));
|
393 |
+
}
|
394 |
+
|
395 |
+
uint32_t s = b;
|
396 |
+
s = s ^ (s >> 4);
|
397 |
+
s = s ^ (s >> 8);
|
398 |
+
s = s ^ (s >> 16);
|
399 |
+
uint32_t sb = (s & 15);
|
400 |
+
s = b ^ sb;
|
401 |
+
sb = sb | (sb << 16);
|
402 |
+
|
403 |
+
uint32_t x = codebook_abs[(a >> 0) & 255];
|
404 |
+
x = x ^ ((s & 0x11111111) * 14);
|
405 |
+
|
406 |
+
uint32_t o = BASE_OFFSET | ((sb & 0x00010001) << 4);
|
407 |
+
|
408 |
+
uint32_t w0 = add_as_half2(mask_lop3(x << 4, XMASK, WMASK), o);
|
409 |
+
uint32_t w1 = add_as_half2(mask_lop3(x << 0, XMASK, WMASK), o);
|
410 |
+
uint32_t w2 = add_as_half2(mask_lop3(x >> 4, XMASK, WMASK), o);
|
411 |
+
uint32_t w3 = add_as_half2(mask_lop3(x >> 8, XMASK, WMASK), o);
|
412 |
+
|
413 |
+
output[blockIdx.x*256*4 + threadIdx.x*4 + 0] = w0;
|
414 |
+
output[blockIdx.x*256*4 + threadIdx.x*4 + 1] = w1;
|
415 |
+
output[blockIdx.x*256*4 + threadIdx.x*4 + 2] = w2;
|
416 |
+
output[blockIdx.x*256*4 + threadIdx.x*4 + 3] = w3;
|
417 |
+
}
|
418 |
+
|
419 |
+
__host__ extern torch::Tensor test_codebook_expand(torch::Tensor codebook_abs) {
|
420 |
+
|
421 |
+
torch::TensorOptions options = torch::TensorOptions()
|
422 |
+
.dtype(torch::kFloat16)
|
423 |
+
.layout(torch::kStrided)
|
424 |
+
.device(torch::kCUDA)
|
425 |
+
.requires_grad(false);
|
426 |
+
torch::Tensor output = torch::zeros(std::vector<int64_t>{256*256,8}, options);
|
427 |
+
|
428 |
+
test_codebook_expand_kernel<<<256, 256>>>((uint32_t*)output.data_ptr<c10::Half>(), (const uint32_t*)codebook_abs.data_ptr<int32_t>());
|
429 |
+
|
430 |
+
gpuErrchk(cudaPeekAtLastError());
|
431 |
+
|
432 |
+
return output;
|
433 |
+
}
|
434 |
+
|
435 |
+
|
436 |
+
|
437 |
+
|
438 |
+
__global__ static void
|
439 |
+
// __launch_bounds__(1024, 1024)
|
440 |
+
decompress_packed_e8p_kernel(
|
441 |
+
uint32_t *__restrict__ output,
|
442 |
+
const uint2 *__restrict__ weights_compressed,
|
443 |
+
const uint32_t *__restrict__ codebook_abs,
|
444 |
+
int N,
|
445 |
+
int K
|
446 |
+
) {
|
447 |
+
int warpId = threadIdx.y;
|
448 |
+
int laneId = threadIdx.x;
|
449 |
+
|
450 |
+
for (int iin = blockIdx.x; iin < (N >> 4); iin += gridDim.x) {
|
451 |
+
|
452 |
+
for (int iik = warpId; iik < (K >> 6); iik += 32) {
|
453 |
+
uint2 w_compr = weights_compressed[laneId + 32*iik + (K >> 1)*iin];
|
454 |
+
uint32_t a = w_compr.x;
|
455 |
+
uint32_t b = w_compr.y;
|
456 |
+
|
457 |
+
uint32_t s = b;
|
458 |
+
s = s ^ (s >> 4);
|
459 |
+
s = s ^ (s >> 8);
|
460 |
+
s = s ^ (s >> 16);
|
461 |
+
uint32_t sb = (s & 15);
|
462 |
+
s = b ^ sb;
|
463 |
+
sb = sb | (sb << 16);
|
464 |
+
|
465 |
+
/// BLOCK 01
|
466 |
+
{
|
467 |
+
uint32_t x = codebook_abs[(a >> 0) & 255];
|
468 |
+
x = x ^ ((s & 0x11111111) * 14);
|
469 |
+
|
470 |
+
uint32_t o = BASE_OFFSET | ((sb & 0x00010001) << 4);
|
471 |
+
|
472 |
+
uint32_t w00 = add_as_half2(mask_lop3(x << 4, XMASK, WMASK), o);
|
473 |
+
uint32_t w01 = add_as_half2(mask_lop3(x << 0, XMASK, WMASK), o);
|
474 |
+
uint32_t w02 = add_as_half2(mask_lop3(x >> 4, XMASK, WMASK), o);
|
475 |
+
uint32_t w03 = add_as_half2(mask_lop3(x >> 8, XMASK, WMASK), o);
|
476 |
+
|
477 |
+
x = codebook_abs[(a >> 8) & 255];
|
478 |
+
x = x ^ ((s & 0x22222222) * 7);
|
479 |
+
|
480 |
+
o = BASE_OFFSET | ((sb & 0x00020002) << 3);
|
481 |
+
|
482 |
+
uint32_t w10 = add_as_half2(mask_lop3(x << 4, XMASK, WMASK), o);
|
483 |
+
uint32_t w11 = add_as_half2(mask_lop3(x << 0, XMASK, WMASK), o);
|
484 |
+
uint32_t w12 = add_as_half2(mask_lop3(x >> 4, XMASK, WMASK), o);
|
485 |
+
uint32_t w13 = add_as_half2(mask_lop3(x >> 8, XMASK, WMASK), o);
|
486 |
+
|
487 |
+
output[iin*8*K + (laneId >> 2)*K + 0 * (K >> 1) + iik*32 + 0*4 + ((laneId & 3) << 3) + 0] = w00;
|
488 |
+
output[iin*8*K + (laneId >> 2)*K + 0 * (K >> 1) + iik*32 + 0*4 + ((laneId & 3) << 3) + 1] = w01;
|
489 |
+
output[iin*8*K + (laneId >> 2)*K + 1 * (K >> 1) + iik*32 + 0*4 + ((laneId & 3) << 3) + 0] = w10;
|
490 |
+
output[iin*8*K + (laneId >> 2)*K + 1 * (K >> 1) + iik*32 + 0*4 + ((laneId & 3) << 3) + 1] = w11;
|
491 |
+
|
492 |
+
output[iin*8*K + (laneId >> 2)*K + 0 * (K >> 1) + iik*32 + 0*4 + ((laneId & 3) << 3) + 2] = w02;
|
493 |
+
output[iin*8*K + (laneId >> 2)*K + 0 * (K >> 1) + iik*32 + 0*4 + ((laneId & 3) << 3) + 3] = w03;
|
494 |
+
output[iin*8*K + (laneId >> 2)*K + 1 * (K >> 1) + iik*32 + 0*4 + ((laneId & 3) << 3) + 2] = w12;
|
495 |
+
output[iin*8*K + (laneId >> 2)*K + 1 * (K >> 1) + iik*32 + 0*4 + ((laneId & 3) << 3) + 3] = w13;
|
496 |
+
|
497 |
+
}
|
498 |
+
/// BLOCK 23
|
499 |
+
{
|
500 |
+
uint32_t x = codebook_abs[(a >> 16) & 255];
|
501 |
+
s = s >> 2;
|
502 |
+
x = x ^ ((s & 0x11111111) * 14);
|
503 |
+
|
504 |
+
uint32_t o = BASE_OFFSET | ((sb & 0x00040004) << 2);
|
505 |
+
|
506 |
+
uint32_t w00 = add_as_half2(mask_lop3(x << 4, XMASK, WMASK), o);
|
507 |
+
uint32_t w01 = add_as_half2(mask_lop3(x << 0, XMASK, WMASK), o);
|
508 |
+
uint32_t w02 = add_as_half2(mask_lop3(x >> 4, XMASK, WMASK), o);
|
509 |
+
uint32_t w03 = add_as_half2(mask_lop3(x >> 8, XMASK, WMASK), o);
|
510 |
+
|
511 |
+
x = codebook_abs[(a >> 24) & 255];
|
512 |
+
x = x ^ ((s & 0x22222222) * 7);
|
513 |
+
|
514 |
+
o = BASE_OFFSET | ((sb & 0x00080008) << 1);
|
515 |
+
|
516 |
+
uint32_t w10 = add_as_half2(mask_lop3(x << 4, XMASK, WMASK), o);
|
517 |
+
uint32_t w11 = add_as_half2(mask_lop3(x << 0, XMASK, WMASK), o);
|
518 |
+
uint32_t w12 = add_as_half2(mask_lop3(x >> 4, XMASK, WMASK), o);
|
519 |
+
uint32_t w13 = add_as_half2(mask_lop3(x >> 8, XMASK, WMASK), o);
|
520 |
+
|
521 |
+
output[iin*8*K + (laneId >> 2)*K + 0 * (K >> 1) + iik*32 + 1*4 + ((laneId & 3) << 3) + 0] = w00;
|
522 |
+
output[iin*8*K + (laneId >> 2)*K + 0 * (K >> 1) + iik*32 + 1*4 + ((laneId & 3) << 3) + 1] = w01;
|
523 |
+
output[iin*8*K + (laneId >> 2)*K + 1 * (K >> 1) + iik*32 + 1*4 + ((laneId & 3) << 3) + 0] = w10;
|
524 |
+
output[iin*8*K + (laneId >> 2)*K + 1 * (K >> 1) + iik*32 + 1*4 + ((laneId & 3) << 3) + 1] = w11;
|
525 |
+
|
526 |
+
output[iin*8*K + (laneId >> 2)*K + 0 * (K >> 1) + iik*32 + 1*4 + ((laneId & 3) << 3) + 2] = w02;
|
527 |
+
output[iin*8*K + (laneId >> 2)*K + 0 * (K >> 1) + iik*32 + 1*4 + ((laneId & 3) << 3) + 3] = w03;
|
528 |
+
output[iin*8*K + (laneId >> 2)*K + 1 * (K >> 1) + iik*32 + 1*4 + ((laneId & 3) << 3) + 2] = w12;
|
529 |
+
output[iin*8*K + (laneId >> 2)*K + 1 * (K >> 1) + iik*32 + 1*4 + ((laneId & 3) << 3) + 3] = w13;
|
530 |
+
}
|
531 |
+
}
|
532 |
+
}
|
533 |
+
}
|
534 |
+
|
535 |
+
|
536 |
+
__host__ extern torch::Tensor decompress_packed_e8p(
|
537 |
+
torch::Tensor weights_compressed,
|
538 |
+
torch::Tensor codebook_abs
|
539 |
+
) {
|
540 |
+
CHECK_INPUT(weights_compressed);
|
541 |
+
CHECK_INPUT(codebook_abs);
|
542 |
+
|
543 |
+
TORCH_CHECK(weights_compressed.dim() == 4);
|
544 |
+
TORCH_CHECK(weights_compressed.size(3) == 4);
|
545 |
+
TORCH_CHECK(weights_compressed.size(2) == 8);
|
546 |
+
TORCH_CHECK(codebook_abs.dim() == 1);
|
547 |
+
TORCH_CHECK(weights_compressed.scalar_type() == torch::kInt64);
|
548 |
+
TORCH_CHECK(codebook_abs.scalar_type() == torch::kInt32);
|
549 |
+
TORCH_CHECK(codebook_abs.size(-1) == 256);
|
550 |
+
|
551 |
+
int64_t N = weights_compressed.size(0) * 16;
|
552 |
+
int64_t K = weights_compressed.size(1) << 6;
|
553 |
+
|
554 |
+
TORCH_CHECK(K % 64 == 0, "K is not divisible by 64");
|
555 |
+
TORCH_CHECK(N % 16 == 0, "N is not divisible by 16");
|
556 |
+
|
557 |
+
TORCH_CHECK(K < 65536, "K is not too large");
|
558 |
+
TORCH_CHECK(N < 65536, "N is not too large");
|
559 |
+
|
560 |
+
at::DeviceGuard guard(codebook_abs.device());
|
561 |
+
torch::TensorOptions options = torch::TensorOptions()
|
562 |
+
.dtype(torch::kFloat16)
|
563 |
+
.layout(torch::kStrided)
|
564 |
+
.device(torch::kCUDA)
|
565 |
+
.requires_grad(false);
|
566 |
+
torch::Tensor output = torch::zeros(std::vector<int64_t>{N,K}, options);
|
567 |
+
|
568 |
+
cudaDeviceProp deviceProp;
|
569 |
+
cudaGetDeviceProperties(&deviceProp, weights_compressed.get_device());
|
570 |
+
int64_t grid_size = static_cast<int64_t>(deviceProp.multiProcessorCount);
|
571 |
+
at::cuda::CUDAStream stream = at::cuda::getCurrentCUDAStream();
|
572 |
+
|
573 |
+
const dim3 block_size(32,32);
|
574 |
+
|
575 |
+
decompress_packed_e8p_kernel<<<grid_size, block_size, 0, stream>>>(
|
576 |
+
(uint32_t*)output.data_ptr<c10::Half>(),
|
577 |
+
(const uint2*)weights_compressed.data_ptr<int64_t>(),
|
578 |
+
(const uint32_t*)codebook_abs.data_ptr<int32_t>(),
|
579 |
+
N,
|
580 |
+
K);
|
581 |
+
|
582 |
+
gpuErrchk(cudaPeekAtLastError());
|
583 |
+
|
584 |
+
return output;
|
585 |
+
}
|
quip-sharp/quiptools/quiptools_wrapper.cpp
CHANGED
@@ -43,13 +43,17 @@ void decompress_e8p_origorder(
|
|
43 |
torch::Tensor &Y // m x n
|
44 |
);
|
45 |
|
46 |
-
torch::Tensor
|
|
|
|
|
|
|
|
|
|
|
47 |
torch::Tensor x,
|
48 |
torch::Tensor weights_compressed,
|
49 |
torch::Tensor codebook_abs
|
50 |
);
|
51 |
|
52 |
-
|
53 |
void decompress_hi4b1c_packed(
|
54 |
torch::Tensor YIs, // m x (n/8)
|
55 |
torch::Tensor CB, // 16 x 1
|
@@ -64,7 +68,8 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
|
64 |
m.def("decompress_d4", &decompress_d4, "decompress_d4");
|
65 |
m.def("decompress_d4_origorder", &decompress_d4_origorder, "decompress_d4_origorder");
|
66 |
m.def("decompress_e8p_origorder", &decompress_e8p_origorder, "decompress_e8p_origorder");
|
67 |
-
m.def("
|
|
|
68 |
m.def("decompress_hi4b1c_packed", &decompress_hi4b1c_packed, "decompress_hi4b1c_packed");
|
69 |
}
|
70 |
|
|
|
43 |
torch::Tensor &Y // m x n
|
44 |
);
|
45 |
|
46 |
+
torch::Tensor decompress_packed_e8p(
|
47 |
+
torch::Tensor weights_compressed, // m x (n/8)
|
48 |
+
torch::Tensor codebook_abs // 256 x 8
|
49 |
+
);
|
50 |
+
|
51 |
+
torch::Tensor decode_matvec_e8p(
|
52 |
torch::Tensor x,
|
53 |
torch::Tensor weights_compressed,
|
54 |
torch::Tensor codebook_abs
|
55 |
);
|
56 |
|
|
|
57 |
void decompress_hi4b1c_packed(
|
58 |
torch::Tensor YIs, // m x (n/8)
|
59 |
torch::Tensor CB, // 16 x 1
|
|
|
68 |
m.def("decompress_d4", &decompress_d4, "decompress_d4");
|
69 |
m.def("decompress_d4_origorder", &decompress_d4_origorder, "decompress_d4_origorder");
|
70 |
m.def("decompress_e8p_origorder", &decompress_e8p_origorder, "decompress_e8p_origorder");
|
71 |
+
m.def("decompress_packed_e8p", &decompress_packed_e8p, "decompress_packed_e8p");
|
72 |
+
m.def("decode_matvec_e8p", &decode_matvec_e8p, "decode_matvec_e8p");
|
73 |
m.def("decompress_hi4b1c_packed", &decompress_hi4b1c_packed, "decompress_hi4b1c_packed");
|
74 |
}
|
75 |
|
quip-sharp/scripts/upload_hf.py
CHANGED
@@ -29,4 +29,5 @@ if __name__ == "__main__":
|
|
29 |
multi_commits=args.no_multi_commits,
|
30 |
multi_commits_verbose=True,
|
31 |
token=args.write_token,
|
|
|
32 |
)
|
|
|
29 |
multi_commits=args.no_multi_commits,
|
30 |
multi_commits_verbose=True,
|
31 |
token=args.write_token,
|
32 |
+
create_pr=True, # creates a PR. You must manually merge the PR in
|
33 |
)
|