--- license: apache-2.0 base_model: hfl/chinese-macbert-base tags: - generated_from_trainer datasets: - clue metrics: - accuracy - precision - recall - f1 model-index: - name: muliple_choice2 results: [] --- # muliple_choice2 This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on the clue dataset. It achieves the following results on the evaluation set: - Loss: 1.3057 - Accuracy: 0.38 - Precision: 0.3923 - Recall: 0.3840 - F1: 0.3787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 25 | 1.3834 | 0.38 | 0.4064 | 0.3803 | 0.3842 | | 1.3946 | 2.0 | 50 | 1.3515 | 0.4 | 0.4211 | 0.3970 | 0.4002 | | 1.3946 | 3.0 | 75 | 1.3057 | 0.38 | 0.3923 | 0.3840 | 0.3787 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2