KingNish commited on
Commit
96c66c2
1 Parent(s): db16e61

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -7
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
- base_model: KingNish/Llama-3.2-1B-Instruct
3
  language:
4
  - en
5
- license: apache-2.0
6
  tags:
7
  - text-generation-inference
8
  - transformers
@@ -10,14 +10,55 @@ tags:
10
  - llama
11
  - trl
12
  - sft
 
 
13
  ---
14
 
15
- # Uploaded model
16
 
17
- - **Developed by:** KingNish
18
- - **License:** apache-2.0
19
- - **Finetuned from model :** KingNish/Llama-3.2-1B-Instruct
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
22
 
23
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
1
  ---
2
+ base_model: meta-llama/Llama-3.2-1B-Instruct
3
  language:
4
  - en
5
+ license: llama3.2
6
  tags:
7
  - text-generation-inference
8
  - transformers
 
10
  - llama
11
  - trl
12
  - sft
13
+ - reasoning
14
+ - llama-3
15
  ---
16
 
17
+ # Model Dexcription
18
 
19
+ It's First iteration of this model. For testing purpose its just trained on 10k rows.
20
+ It performed very well than expected. It do first reasoning and than generate response on based on it but it do like o1.
21
+ It do reasoning separately (Just like o1), no tags (like reflection).
22
+ Below is inference code.
23
+ ```python
24
+ from transformers import AutoModelForCausalLM, AutoTokenizer
25
+
26
+ MAX_REASONING_TOKENS = 1024
27
+ MAX_RESPONSE_TOKENS = 512
28
+
29
+ model_name = "KingNish/Reasoning-Llama-1b-v0.1"
30
+
31
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
32
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
33
+
34
+ prompt = "Which is greater 9.9 or 9.11 ??"
35
+ messages = [
36
+ {"role": "user", "content": prompt}
37
+ ]
38
+
39
+ # Generate reasoning
40
+ reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
41
+ reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
42
+ reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
43
+ reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
44
+
45
+ # print("REASONING: " + reasoning_output)
46
+
47
+ # Generate answer
48
+ messages.append({"role": "reasoning", "content": reasoning_output})
49
+ response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
50
+ response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
51
+ response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
52
+ response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)
53
+
54
+ print("ANSWER: " + response_output)
55
+ ```
56
+
57
+ - **Trained by:** [Nishith Jain](https://huggingface.co/KingNish)
58
+ - **License:** llama3.2
59
+ - **Finetuned from model :** [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct)
60
+ - **Dataset used :** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k)
61
 
62
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
63
 
64
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)