--- license: cc-by-sa-4.0 datasets: - KaraAgroAI/CADI-AI language: - en metrics: - mape pipeline_tag: object-detection tags: - object detection - vision --- ## Cashew Disease Identification with AI (CADI-AI) Model ### Model Description Object detection model trained using YOLO v5x. The model was pre-trained on the Cashew Disease Identification with AI (CADI-AI) train set (3788 images) at a resolution of 640x640 pixels. CADI-AI dataset is available in hugging face dataset hub ## Intended uses & limitations You can use the raw model for object detection on cashew images. ### How to use - Load model and perform prediction: ```python import torch # load model model = torch.hub.load('ultralytics/yolov5', 'KaraAgroAI/CADI-AI') # Images img = ['/path/to/CADI-AI-image.jpg']# batch of images # set model parameters model.conf = 0.20 # NMS confidence threshold # perform inference results = model(img, size=640) # Results results.print() results.xyxy[0] # img1 predictions (tensor) results.pandas().xyxy[0] # img1 predictions (pandas) # parse results predictions = results.pred[0] boxes = predictions[:, :4] # x1, y1, x2, y2 scores = predictions[:, 4] categories = predictions[:, 5] # show detection bounding boxes on image results.show() # save results into "results/" folder results.save(save_dir='results/') ``` - Finetune the model on your custom dataset: ```bash yolov5 train --data data.yaml --img 640 --batch 16 --weights KaraAgroAI/CADI-AI --epochs 10 ```