File size: 1,937 Bytes
908443b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
tags:
- merge
- mergekit
- lazymergekit
- Kaoeiri/Keiana-L3-Test5.2-8B-8
- Undi95/Llama-3-LewdPlay-8B
- Undi95/Llama-3-LewdPlay-8B-evo
base_model:
- Kaoeiri/Keiana-L3-Test5.2-8B-8
- Undi95/Llama-3-LewdPlay-8B
- Undi95/Llama-3-LewdPlay-8B-evo
---

# Keiana-L3-Test5.7-8B-13

Keiana-L3-Test5.7-8B-13 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):

# Keep in mind that, this merged model isn't usually tested at the moment, which could benefit in vocabulary error.
* [Kaoeiri/Keiana-L3-Test5.2-8B-8](https://huggingface.co/Kaoeiri/Keiana-L3-Test5.2-8B-8)
* [Undi95/Llama-3-LewdPlay-8B](https://huggingface.co/Undi95/Llama-3-LewdPlay-8B)
* [Undi95/Llama-3-LewdPlay-8B-evo](https://huggingface.co/Undi95/Llama-3-LewdPlay-8B-evo)

## 🧩 Configuration

```yaml
merge_method: model_stock
dtype: float16
base_model: Kaoeiri/Keiana-L3-Test5.4-8B-10
models:
  - model: Kaoeiri/Keiana-L3-Test5.2-8B-8
    parameters:
      weight: .42
      density: .26
  - model: Undi95/Llama-3-LewdPlay-8B
    parameters:
      weight: .36
      density: .48
  - model: Undi95/Llama-3-LewdPlay-8B-evo
    parameters:
      weight: .2
      density: .4
parameters:
  int8_mask: true
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Kaoeiri/Keiana-L3-Test5.7-8B-13"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```