File size: 2,879 Bytes
75005c5 15bce1b a4a72f4 af6d443 0e352e8 15bce1b 7446449 94327cf 4818eb2 540e6f5 4818eb2 7446449 71196fc 7446449 6a2760b 3ff4471 7446449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
language: sv-SE
datasets:
- common_voice
- NST Swedish ASR Database
- P4
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
license: cc0
model-index:
- name: Wav2vec 2.0 large VoxRex Swedish
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice
type: common_voice
args: sv-SE
metrics:
- name: Test WER
type: wer
value: 9.914
---
# Wav2vec 2.0 large VoxRex Swedish
**Disclaimer:** This is a work in progress. See [VoxRex](https://huggingface.co/KBLab/wav2vec2-large-voxrex) for more details.
Finetuned version of KBs [VoxRex large](https://huggingface.co/KBLab/wav2vec2-large-voxrex) model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **3.617%**. WER for Common Voice test set is **9.914%** directly and **7.77%** with a 4-gram language model.
When using this model, make sure that your speech input is sampled at 16kHz.
# Performance\*
![Comparison](comparison.png "Comparison")
<center>\*<i>Chart shows performance without the additional 20k steps of Common Voice fine-tuning</i></center>
## Training
This model has been fine-tuned for 120000 updates on NST + CommonVoice and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed].
![WER during training](chart_1.svg "WER")
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]").
processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-voxrex-swedish")
model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-voxrex-swedish")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
|