File size: 1,777 Bytes
09dd5e4
 
bec9d4c
09dd5e4
 
 
 
 
 
 
 
c1e5d75
09dd5e4
ab2581c
 
c1e5d75
09dd5e4
 
 
c1e5d75
09dd5e4
c1e5d75
09dd5e4
ab2581c
 
 
c1e5d75
09dd5e4
c1e5d75
09dd5e4
 
ab2581c
 
 
 
 
 
09dd5e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: mit
base_model: Josephgflowers/TinyLlama-3T-Cinder-v1.2
tags:
- generated_from_trainer
model-index:
- name: TinyLlama-Cinder-Agent-Rag
  results: []
---

# TinyLlama-Cinder-Agent-Rag
Special Thanks to https://nationtech.io/ for their generous sponorship in training this model.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6328952f798f8d122ce62a44/MbN_SXChmMxuHO8GjdUSc.png)

This model is a fine-tuned version of [Josephgflowers/TinyLlama-3T-Cinder-v1.2](https://huggingface.co/Josephgflowers/TinyLlama-3T-Cinder-v1.2) on https://huggingface.co/datasets/Josephgflowers/agent_1.

## Model description

This models is trained for RAG, Summary, Function Calling and Tool usage. Trained off of Cinder. Cinder is a chatbot designed for chat about STEM topics and storytelling. More information coming.

More model versions coming soon.

See https://huggingface.co/Josephgflowers/TinyLlama-Cinder-Agent-Rag/blob/main/tinyllama_agent_cinder_txtai-rag.py 
For usage example with wiki rag.

## Intended uses & limitations

RAG, Chat, Summary, and tool usage.


![image/png](https://cdn-uploads.huggingface.co/production/uploads/6328952f798f8d122ce62a44/iKqIkk14iwrd50oPrKOFc.png)


![image/png](https://cdn-uploads.huggingface.co/production/uploads/6328952f798f8d122ce62a44/ijVXD83CGR0JG_sFZZXi6.png)


### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- Transformers 4.41.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1