File size: 7,133 Bytes
56b7306
 
aca99ff
2e31d06
3eb0cff
2e31d06
 
 
 
 
 
 
 
 
3eb0cff
2e31d06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56b7306
19be97f
 
52ccb72
 
 
19be97f
fb3c9b6
19be97f
 
 
 
 
 
 
 
 
 
 
fb3c9b6
4764830
19be97f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f1bc96
 
19be97f
2e31d06
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
---
license: mit
widget:
- text: '<|system|>

    You are a helpful assistant</s>

    <|user|>

    Tell me about yourself, what is your name?.</s>

    <|assistant|>

    '
widget2:
- text: '<|system|>

    You are a helpful assistant</s>

    <|user|>

    How about another amazing adventure on The Cinder Show!</s>

    <|assistant|>

    '
model-index:
- name: TinyLlama-3T-Cinder-v1.1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 34.04
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/TinyLlama-3T-Cinder-v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 50.4
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/TinyLlama-3T-Cinder-v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 25.75
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/TinyLlama-3T-Cinder-v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 37.57
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/TinyLlama-3T-Cinder-v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 56.43
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/TinyLlama-3T-Cinder-v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.0
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/TinyLlama-3T-Cinder-v1.1
      name: Open LLM Leaderboard
---
Model Card for Cinder
Model Name: Cinder

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6328952f798f8d122ce62a44/_5ihlDZflgdA0Em76t5j9.png)

Created by: Joseph Flowers
***Updated 1-10-24*** New round of training, added gguf model 8bit.
Model Overview
Cinder is an AI chatbot tailored for engaging users in scientific and educational conversations, offering companionship, and sparking imaginative exploration. It is built on the TinyLlama 1.1B parameter model and trained on a unique combination of datasets.

Development Details (Still in development)
Model Architecture: TinyLlama 1.1B (based on the 3T checkpoint) https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
Training Datasets:
Interactive chats with GPT-4 where I prompt GPT4 to create chats between a User and Cinder and monitor the results. A lot of Please continue, this took around a month. Note: There are also multi character chats with Vector and Cozmo robots characters, a Computer Voice character that is a narrator, as well as other characters..
A subset of Open Orca: https://huggingface.co/datasets/Open-Orca/OpenOrcatr
Q&A content generated by GPT-3.5 Turbo by having it read open source encyclopedias and create QA pairs. 
Shortened version of Samantha by Eric Hartford https://huggingface.co/datasets/cognitivecomputations/samantha-data
OpenAssistant: https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25
***Updated 1-10-24*** Continued training with sorted Orca dataset to around 600mb for STEM related topics, generated around 100mb of STEM q and a with GPT3.5 and GPT4, 
a chunk of Samantha dataset, Glaive function calling v2, and python code instruction 18k alpaca dataset, around 1GB total. 
Core Influences: Inspired by the character 'Data' from Star Trek: The Next Generation, Lewis Carroll's writings, and a range of educational resources.

Key Features
Inquisitive Scientist: Cinder shows a passion for space and STEM topics.
Quirky Educator: It makes complex concepts engaging and accessible.
Empathetic Companion: Cinder is designed to demonstrate understanding and emotional depth.
Adventurous Spacefarer: Cinder leads imaginative space adventures.
Static yet Sophisticated: While Cinder does not learn or adapt with each interaction, its design encompasses a breadth of knowledge and perspectives.

Intended Use
Educational Tool: Enhances STEM learning across different age groups.
Companion: Provides meaningful and empathetic dialogues.
Creative Guide: Facilitates imaginative exploration in scientific contexts.

Ethical Considerations
We emphasize ethical AI practices and the privacy of users. Cinder's development includes measures against misuse and ensures respectful, secure interactions.

Limitations
Cinder's responses are fixed and do not adapt or learn from individual interactions.
The empathetic responses generated are algorithmic and not a substitute for human empathy.

Future Enhancements and Collaboration
I am actively seeking feedback, suggestions, or additional datasets to enhance Cinder's capabilities.
Future updates may include more interactive educational modules and advanced empathetic response algorithms.
I encourage collaboration and contributions to expand Cinder's educational and creative reach.
If you have any suggestions or requests please leave them in the newly created discord channel.
https://discord.gg/5ebjDrnZ


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Josephgflowers__TinyLlama-3T-Cinder-v1.1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |34.03|
|AI2 Reasoning Challenge (25-Shot)|34.04|
|HellaSwag (10-Shot)              |50.40|
|MMLU (5-Shot)                    |25.75|
|TruthfulQA (0-shot)              |37.57|
|Winogrande (5-shot)              |56.43|
|GSM8k (5-shot)                   | 0.00|