diff --git "a/Therapy_LORA_Fined_Tuned_Llama3_8B.ipynb" "b/Therapy_LORA_Fined_Tuned_Llama3_8B.ipynb" deleted file mode 100644--- "a/Therapy_LORA_Fined_Tuned_Llama3_8B.ipynb" +++ /dev/null @@ -1,13731 +0,0 @@ -{ - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [], - "machine_shape": "hm", - "gpuType": "A100" - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "7c57de542a934cb0b91fb2b0e8c88e7b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "VBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "VBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "VBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_50a020332d8e4afbbaf5c86c5a316a8e", - "IPY_MODEL_f388c680bd57423297e98246a4bd4eb0", - "IPY_MODEL_8acc093a26e34ccc9e4e7c0252f4716b", - "IPY_MODEL_07018e8f53474ca390b9922cd7f71661" - ], - "layout": "IPY_MODEL_c913025b0e76407e961e89c335ab1753" - } - }, - "e09a6eac62cf4aa99168d0e50fec5314": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_56eef714b9c5492885577f21e9d62733", - "placeholder": "", - "style": "IPY_MODEL_1c5a50faaf8a49f49be022b5c2876d22", - "value": "
Step | \n", - "Training Loss | \n", - "
---|---|
1 | \n", - "2.035200 | \n", - "
2 | \n", - "2.440300 | \n", - "
3 | \n", - "1.987100 | \n", - "
4 | \n", - "2.004400 | \n", - "
5 | \n", - "2.109200 | \n", - "
6 | \n", - "1.612300 | \n", - "
7 | \n", - "1.610300 | \n", - "
8 | \n", - "2.008700 | \n", - "
9 | \n", - "1.333500 | \n", - "
10 | \n", - "1.556800 | \n", - "
11 | \n", - "1.365500 | \n", - "
12 | \n", - "1.463800 | \n", - "
13 | \n", - "1.172800 | \n", - "
14 | \n", - "1.170800 | \n", - "
15 | \n", - "1.415200 | \n", - "
16 | \n", - "1.206500 | \n", - "
17 | \n", - "1.114500 | \n", - "
18 | \n", - "1.058100 | \n", - "
19 | \n", - "1.007300 | \n", - "
20 | \n", - "1.226100 | \n", - "
21 | \n", - "0.810900 | \n", - "
22 | \n", - "1.011300 | \n", - "
23 | \n", - "1.131600 | \n", - "
24 | \n", - "0.953600 | \n", - "
25 | \n", - "0.862700 | \n", - "
26 | \n", - "0.854000 | \n", - "
27 | \n", - "1.255600 | \n", - "
28 | \n", - "0.990600 | \n", - "
29 | \n", - "1.103300 | \n", - "
30 | \n", - "1.091000 | \n", - "
31 | \n", - "1.018300 | \n", - "
32 | \n", - "0.840600 | \n", - "
33 | \n", - "1.081000 | \n", - "
34 | \n", - "1.113600 | \n", - "
35 | \n", - "1.003300 | \n", - "
36 | \n", - "1.325900 | \n", - "
37 | \n", - "0.866900 | \n", - "
38 | \n", - "0.912600 | \n", - "
39 | \n", - "1.007300 | \n", - "
40 | \n", - "0.761800 | \n", - "
41 | \n", - "1.147900 | \n", - "
42 | \n", - "0.762900 | \n", - "
43 | \n", - "0.962800 | \n", - "
44 | \n", - "1.122300 | \n", - "
45 | \n", - "0.941600 | \n", - "
46 | \n", - "0.985300 | \n", - "
47 | \n", - "0.903500 | \n", - "
48 | \n", - "0.889100 | \n", - "
49 | \n", - "0.983100 | \n", - "
50 | \n", - "0.814300 | \n", - "
51 | \n", - "1.043200 | \n", - "
52 | \n", - "0.753100 | \n", - "
53 | \n", - "0.761000 | \n", - "
54 | \n", - "0.817300 | \n", - "
55 | \n", - "1.039500 | \n", - "
56 | \n", - "0.811700 | \n", - "
57 | \n", - "0.842200 | \n", - "
58 | \n", - "0.892900 | \n", - "
59 | \n", - "0.863500 | \n", - "
60 | \n", - "0.874400 | \n", - "
61 | \n", - "0.670500 | \n", - "
62 | \n", - "1.125400 | \n", - "
63 | \n", - "1.007000 | \n", - "
64 | \n", - "0.959700 | \n", - "
65 | \n", - "0.860100 | \n", - "
66 | \n", - "0.868600 | \n", - "
67 | \n", - "0.687900 | \n", - "
68 | \n", - "0.855600 | \n", - "
69 | \n", - "0.996800 | \n", - "
70 | \n", - "1.227800 | \n", - "
71 | \n", - "0.788800 | \n", - "
72 | \n", - "1.131100 | \n", - "
73 | \n", - "0.939900 | \n", - "
74 | \n", - "0.848600 | \n", - "
75 | \n", - "1.160700 | \n", - "
76 | \n", - "0.847100 | \n", - "
77 | \n", - "0.987500 | \n", - "
78 | \n", - "0.857900 | \n", - "
79 | \n", - "0.818400 | \n", - "
80 | \n", - "0.981400 | \n", - "
81 | \n", - "1.127600 | \n", - "
82 | \n", - "0.990600 | \n", - "
83 | \n", - "0.886300 | \n", - "
84 | \n", - "0.772400 | \n", - "
85 | \n", - "1.013000 | \n", - "
86 | \n", - "1.049300 | \n", - "
87 | \n", - "1.035500 | \n", - "
88 | \n", - "0.812300 | \n", - "
89 | \n", - "0.888700 | \n", - "
90 | \n", - "0.808700 | \n", - "
91 | \n", - "1.126400 | \n", - "
92 | \n", - "0.720200 | \n", - "
93 | \n", - "0.835700 | \n", - "
94 | \n", - "0.985800 | \n", - "
95 | \n", - "0.938100 | \n", - "
96 | \n", - "0.824300 | \n", - "
97 | \n", - "0.872600 | \n", - "
98 | \n", - "1.139100 | \n", - "
99 | \n", - "0.944100 | \n", - "
100 | \n", - "0.819500 | \n", - "
101 | \n", - "0.664200 | \n", - "
102 | \n", - "0.694100 | \n", - "
103 | \n", - "0.850700 | \n", - "
104 | \n", - "0.677200 | \n", - "
105 | \n", - "1.015500 | \n", - "
106 | \n", - "0.979900 | \n", - "
107 | \n", - "0.680900 | \n", - "
108 | \n", - "0.778400 | \n", - "
109 | \n", - "0.862600 | \n", - "
110 | \n", - "0.802300 | \n", - "
111 | \n", - "0.677100 | \n", - "
112 | \n", - "0.982300 | \n", - "
113 | \n", - "1.114900 | \n", - "
114 | \n", - "0.908700 | \n", - "
115 | \n", - "0.741500 | \n", - "
116 | \n", - "0.653900 | \n", - "
117 | \n", - "0.755000 | \n", - "
118 | \n", - "1.240100 | \n", - "
119 | \n", - "0.914800 | \n", - "
120 | \n", - "0.885100 | \n", - "
121 | \n", - "0.847100 | \n", - "
122 | \n", - "0.726500 | \n", - "
123 | \n", - "0.991600 | \n", - "
124 | \n", - "0.718400 | \n", - "
125 | \n", - "0.754300 | \n", - "
126 | \n", - "0.768900 | \n", - "
127 | \n", - "0.882800 | \n", - "
128 | \n", - "0.836900 | \n", - "
129 | \n", - "1.157700 | \n", - "
"
- ]
- },
- "metadata": {}
- }
- ]
- },
- {
- "cell_type": "markdown",
- "source": [
- "# Model Training on Dataset 2"
- ],
- "metadata": {
- "id": "veNHf3ltLuRM"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "# Define trainer arguments\n",
- "trainer_2_args = TrainingArguments(\n",
- " per_device_train_batch_size=2,\n",
- " gradient_accumulation_steps=2,\n",
- " num_train_epochs=3,\n",
- " learning_rate=2e-4,\n",
- " warmup_ratio=0.03,\n",
- " fp16=True,\n",
- " logging_steps=5,\n",
- " output_dir=\"outputs\")\n",
- "\n",
- "\n",
- "# Define trainer\n",
- "trainer_2 = Trainer(\n",
- " model=model,\n",
- " args=trainer_2_args,\n",
- " train_dataset=tokenized_dataset_2[\"text\"],\n",
- " data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False)\n",
- ")\n",
- "\n",
- "\n",
- "# Train model\n",
- "model.config.use_cache = False # Supress Warnings, re-enable for inference later\n",
- "trainer_2.train()\n",
- "\n",
- "\n",
- "# Save the fine-tuned model\n",
- "trainer_2.save_model(\"finetuned_model_2\")"
- ],
- "metadata": {
- "id": "w6OeNB7Vzf70",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 1000
- },
- "outputId": "12609eb1-af81-40a4-ad68-32fe0749d2ac"
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- " "
- ]
- },
- "metadata": {}
- }
- ]
- },
- {
- "cell_type": "markdown",
- "source": [
- "# Upload To HuggingFace Hub"
- ],
- "metadata": {
- "id": "ANKGOAzX7adc"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "model.push_to_hub(\"John4Blues/Llama-3-8B-Therapy\", use_auth_token=True, commit_message=\"Just A Basic Trained Model\")"
- ],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 84,
- "referenced_widgets": [
- "1a741f5ef12546a693be8960e60674cb",
- "32416b54fe03455bb8312d9885665a17",
- "5920aec36c114a78ba1ec41c8755fa2b",
- "c8c21ce1b1364a9f87be2cb78d428ecf",
- "ca5130da04d24ed4ae95fe18158a5a62",
- "9d18488e5bae46e29f73dd4d7fdddcf2",
- "9d073b0f97094a1f93ea891814da353b",
- "2a1f7704665b4c2a84ca643e940f2ae2",
- "2a5a98922beb47abaca3274f0250aadd",
- "c8996659a61c45c389ba6d251276d61e",
- "654206dbf9f14fc294f51ddd5c2b7cf6"
- ]
- },
- "id": "6g9s3XK97xtY",
- "outputId": "0bff6491-e420-4491-93f1-6edaf2bac8a0"
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "adapter_model.safetensors: 0%| | 0.00/27.3M [00:00, ?B/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "1a741f5ef12546a693be8960e60674cb"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "CommitInfo(commit_url='https://huggingface.co/John4Blues/Llama-3-8B-Therapy/commit/af765571aaebac3fae1dea710f8f306651de60f9', commit_message='Just A Basic Trained Model', commit_description='', oid='af765571aaebac3fae1dea710f8f306651de60f9', pr_url=None, pr_revision=None, pr_num=None)"
- ],
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "string"
- }
- },
- "metadata": {},
- "execution_count": 12
- }
- ]
- },
- {
- "cell_type": "markdown",
- "source": [
- "# Merging Adaptors With Base Model\n",
- "\n",
- "Since this part is added later... I'll need to get the adaptors, the base model, merge them together and then upload to huggingface"
- ],
- "metadata": {
- "id": "mN0SQ4y_jC29"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "!pip install -q peft"
- ],
- "metadata": {
- "id": "4npT_vSvTmR2",
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "outputId": "eec79d76-e593-44f0-b2a6-129f632d216e"
- },
- "execution_count": 1,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m296.4/296.4 kB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25h"
- ]
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "from huggingface_hub import notebook_login\n",
- "\n",
- "\n",
- "notebook_login()"
- ],
- "metadata": {
- "id": "Ue1jp9RoThRE",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 145,
- "referenced_widgets": [
- "c703a1c90542416c865205c5212de48d",
- "175620152ba34a3783c2c7eafb57ab68",
- "543a4c5a56f94f4fabb7c93d02ff4a7f",
- "16452d6ace354fcd85ebcd42ff08dc6f",
- "24b4b20213004fd29d7230873f66c06e",
- "92664c8045cc445e944e9ee212597d70",
- "91f6a15e057a4ae0968f2ab23bbdd57e",
- "8772da34d0444b4ab3b58e170e81cd44",
- "29b5514041ec46269de3cf5a07dff246",
- "86438cf6510848ad83c73f7b8026aaf2",
- "b2b1b915e2704481bdd8e9d804a890b0",
- "65c3065b9b76445d85cb5e448293eee4",
- "0bc6fa83e9ed453eb01a8b2e29aa1c63",
- "53ab9f5768864d708ea003972f361104",
- "640bd3f1f4d64f26b23a581f2d1ba76c",
- "759f17d8263b49a6a0b80c514a3a6648",
- "4df8f04d06c748a6ae3f64c00d4f382f",
- "0d3697cc1b614c82bfb89ed17c80df84",
- "0d8d55fcf83c477aa4217a3eb097891c",
- "05dc8fc907df4be9b0103b6cb8c0bbf3",
- "d5df5f862d214590bc70b9bc595fecb0",
- "b282475de07e4931b6bf4362c5a0889f",
- "aae37e2fab364bdc94898f5d9ddb7bb0",
- "fa4022fc22224bc1b1d88565d0a61b1e",
- "7966795cbce146ea809544dc05d37802",
- "92afbdcbe92740cbb8fb0e2ea7c181b2",
- "5c609e11288649759a0561ad849f68f9",
- "ebad5031a1f44ec189865c23830d7289",
- "e4d52fa944ac4a85bd350c87e8ae16e5",
- "80c764d3c9a8463f87265bdd89c8430e",
- "572ba6d8e54b4709840a8516fd66dd31",
- "910add1a5ca34d1586643b097ffa58ce"
- ]
- },
- "outputId": "585fea9c-f63f-40bc-f103-7cad167c8fed"
- },
- "execution_count": 2,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "VBox(children=(HTML(value='\n",
- " \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " Step \n",
- " Training Loss \n",
- " \n",
- " \n",
- " 5 \n",
- " 1.937900 \n",
- " \n",
- " \n",
- " 10 \n",
- " 1.928900 \n",
- " \n",
- " \n",
- " 15 \n",
- " 1.850000 \n",
- " \n",
- " \n",
- " 20 \n",
- " 1.922100 \n",
- " \n",
- " \n",
- " 25 \n",
- " 1.673800 \n",
- " \n",
- " \n",
- " 30 \n",
- " 1.782600 \n",
- " \n",
- " \n",
- " 35 \n",
- " 1.923600 \n",
- " \n",
- " \n",
- " 40 \n",
- " 1.805500 \n",
- " \n",
- " \n",
- " 45 \n",
- " 1.884300 \n",
- " \n",
- " \n",
- " 50 \n",
- " 1.886500 \n",
- " \n",
- " \n",
- " 55 \n",
- " 1.782400 \n",
- " \n",
- " \n",
- " 60 \n",
- " 1.816200 \n",
- " \n",
- " \n",
- " 65 \n",
- " 1.919600 \n",
- " \n",
- " \n",
- " 70 \n",
- " 1.710600 \n",
- " \n",
- " \n",
- " 75 \n",
- " 1.896300 \n",
- " \n",
- " \n",
- " 80 \n",
- " 1.755300 \n",
- " \n",
- " \n",
- " 85 \n",
- " 1.819700 \n",
- " \n",
- " \n",
- " 90 \n",
- " 1.793800 \n",
- " \n",
- " \n",
- " 95 \n",
- " 1.757700 \n",
- " \n",
- " \n",
- " 100 \n",
- " 1.777400 \n",
- " \n",
- " \n",
- " 105 \n",
- " 1.692000 \n",
- " \n",
- " \n",
- " 110 \n",
- " 1.876600 \n",
- " \n",
- " \n",
- " 115 \n",
- " 1.770800 \n",
- " \n",
- " \n",
- " 120 \n",
- " 1.846000 \n",
- " \n",
- " \n",
- " 125 \n",
- " 1.906200 \n",
- " \n",
- " \n",
- " 130 \n",
- " 1.767400 \n",
- " \n",
- " \n",
- " 135 \n",
- " 1.749600 \n",
- " \n",
- " \n",
- " 140 \n",
- " 1.797900 \n",
- " \n",
- " \n",
- " 145 \n",
- " 1.762100 \n",
- " \n",
- " \n",
- " 150 \n",
- " 1.796600 \n",
- " \n",
- " \n",
- " 155 \n",
- " 1.796800 \n",
- " \n",
- " \n",
- " 160 \n",
- " 1.762500 \n",
- " \n",
- " \n",
- " 165 \n",
- " 1.832900 \n",
- " \n",
- " \n",
- " 170 \n",
- " 1.823500 \n",
- " \n",
- " \n",
- " 175 \n",
- " 1.885300 \n",
- " \n",
- " \n",
- " 180 \n",
- " 1.826200 \n",
- " \n",
- " \n",
- " 185 \n",
- " 1.799100 \n",
- " \n",
- " \n",
- " 190 \n",
- " 1.739100 \n",
- " \n",
- " \n",
- " 195 \n",
- " 1.867600 \n",
- " \n",
- " \n",
- " 200 \n",
- " 1.809800 \n",
- " \n",
- " \n",
- " 205 \n",
- " 1.800100 \n",
- " \n",
- " \n",
- " 210 \n",
- " 1.798900 \n",
- " \n",
- " \n",
- " 215 \n",
- " 1.835800 \n",
- " \n",
- " \n",
- " 220 \n",
- " 1.751300 \n",
- " \n",
- " \n",
- " 225 \n",
- " 1.710000 \n",
- " \n",
- " \n",
- " 230 \n",
- " 1.881700 \n",
- " \n",
- " \n",
- " 235 \n",
- " 1.793300 \n",
- " \n",
- " \n",
- " 240 \n",
- " 1.806900 \n",
- " \n",
- " \n",
- " 245 \n",
- " 1.770700 \n",
- " \n",
- " \n",
- " 250 \n",
- " 1.796700 \n",
- " \n",
- " \n",
- " 255 \n",
- " 1.769900 \n",
- " \n",
- " \n",
- " 260 \n",
- " 1.784300 \n",
- " \n",
- " \n",
- " 265 \n",
- " 1.811600 \n",
- " \n",
- " \n",
- " 270 \n",
- " 1.732000 \n",
- " \n",
- " \n",
- " 275 \n",
- " 1.666400 \n",
- " \n",
- " \n",
- " 280 \n",
- " 1.677400 \n",
- " \n",
- " \n",
- " 285 \n",
- " 1.820700 \n",
- " \n",
- " \n",
- " 290 \n",
- " 1.659500 \n",
- " \n",
- " \n",
- " 295 \n",
- " 1.667800 \n",
- " \n",
- " \n",
- " 300 \n",
- " 1.765100 \n",
- " \n",
- " \n",
- " 305 \n",
- " 1.719200 \n",
- " \n",
- " \n",
- " 310 \n",
- " 1.828000 \n",
- " \n",
- " \n",
- " 315 \n",
- " 1.805600 \n",
- " \n",
- " \n",
- " 320 \n",
- " 1.781000 \n",
- " \n",
- " \n",
- " 325 \n",
- " 1.662300 \n",
- " \n",
- " \n",
- " 330 \n",
- " 1.742200 \n",
- " \n",
- " \n",
- " 335 \n",
- " 1.714500 \n",
- " \n",
- " \n",
- " 340 \n",
- " 1.693700 \n",
- " \n",
- " \n",
- " 345 \n",
- " 1.608100 \n",
- " \n",
- " \n",
- " 350 \n",
- " 1.780700 \n",
- " \n",
- " \n",
- " 355 \n",
- " 1.694400 \n",
- " \n",
- " \n",
- " 360 \n",
- " 1.559900 \n",
- " \n",
- " \n",
- " 365 \n",
- " 1.641600 \n",
- " \n",
- " \n",
- " 370 \n",
- " 1.655600 \n",
- " \n",
- " \n",
- " 375 \n",
- " 1.719200 \n",
- " \n",
- " \n",
- " 380 \n",
- " 1.747800 \n",
- " \n",
- " \n",
- " 385 \n",
- " 1.653700 \n",
- " \n",
- " \n",
- " 390 \n",
- " 1.739900 \n",
- " \n",
- " \n",
- " 395 \n",
- " 1.651900 \n",
- " \n",
- " \n",
- " 400 \n",
- " 1.826100 \n",
- " \n",
- " \n",
- " 405 \n",
- " 1.788700 \n",
- " \n",
- " \n",
- " 410 \n",
- " 1.623900 \n",
- " \n",
- " \n",
- " 415 \n",
- " 1.672400 \n",
- " \n",
- " \n",
- " 420 \n",
- " 1.672100 \n",
- " \n",
- " \n",
- " 425 \n",
- " 1.791100 \n",
- " \n",
- " \n",
- " 430 \n",
- " 1.687000 \n",
- " \n",
- " \n",
- " 435 \n",
- " 1.698900 \n",
- " \n",
- " \n",
- " 440 \n",
- " 1.616600 \n",
- " \n",
- " \n",
- " 445 \n",
- " 1.539200 \n",
- " \n",
- " \n",
- " 450 \n",
- " 1.643000 \n",
- " \n",
- " \n",
- " 455 \n",
- " 1.748800 \n",
- " \n",
- " \n",
- " 460 \n",
- " 1.870800 \n",
- " \n",
- " \n",
- " 465 \n",
- " 1.726900 \n",
- " \n",
- " \n",
- " 470 \n",
- " 1.741500 \n",
- " \n",
- " \n",
- " 475 \n",
- " 1.761000 \n",
- " \n",
- " \n",
- " 480 \n",
- " 1.647400 \n",
- " \n",
- " \n",
- " 485 \n",
- " 1.606400 \n",
- " \n",
- " \n",
- " 490 \n",
- " 1.589900 \n",
- " \n",
- " \n",
- " 495 \n",
- " 1.634000 \n",
- " \n",
- " \n",
- " 500 \n",
- " 1.655500 \n",
- " \n",
- " \n",
- " 505 \n",
- " 1.813400 \n",
- " \n",
- " \n",
- " 510 \n",
- " 1.580000 \n",
- " \n",
- " \n",
- " 515 \n",
- " 1.584000 \n",
- " \n",
- " \n",
- " 520 \n",
- " 1.540400 \n",
- " \n",
- " \n",
- " 525 \n",
- " 1.585400 \n",
- " \n",
- " \n",
- " 530 \n",
- " 1.706400 \n",
- " \n",
- " \n",
- " 535 \n",
- " 1.712000 \n",
- " \n",
- " \n",
- " 540 \n",
- " 1.627300 \n",
- " \n",
- " \n",
- " 545 \n",
- " 1.625000 \n",
- " \n",
- " \n",
- " 550 \n",
- " 1.693900 \n",
- " \n",
- " \n",
- " 555 \n",
- " 1.672300 \n",
- " \n",
- " \n",
- " 560 \n",
- " 1.662200 \n",
- " \n",
- " \n",
- " 565 \n",
- " 1.644700 \n",
- " \n",
- " \n",
- " 570 \n",
- " 1.647400 \n",
- " \n",
- " \n",
- " 575 \n",
- " 1.651400 \n",
- " \n",
- " \n",
- " 580 \n",
- " 1.624000 \n",
- " \n",
- " \n",
- " 585 \n",
- " 1.666000 \n",
- " \n",
- " \n",
- " 590 \n",
- " 1.493200 \n",
- " \n",
- " \n",
- " 595 \n",
- " 1.655900 \n",
- " \n",
- " \n",
- " 600 \n",
- " 1.695700 \n",
- " \n",
- " \n",
- " 605 \n",
- " 1.711100 \n",
- " \n",
- " \n",
- " 610 \n",
- " 1.691600 \n",
- " \n",
- " \n",
- " 615 \n",
- " 1.628000 \n",
- " \n",
- " \n",
- " 620 \n",
- " 1.612300 \n",
- " \n",
- " \n",
- " 625 \n",
- " 1.544400 \n",
- " \n",
- " \n",
- " 630 \n",
- " 1.629700 \n",
- " \n",
- " \n",
- " 635 \n",
- " 1.757900 \n",
- " \n",
- " \n",
- " 640 \n",
- " 1.642900 \n",
- " \n",
- " \n",
- " 645 \n",
- " 1.578700 \n",
- " \n",
- " \n",
- " 650 \n",
- " 1.623900 \n",
- " \n",
- " \n",
- " 655 \n",
- " 1.693600 \n",
- " \n",
- " \n",
- " 660 \n",
- " 1.648000 \n",
- " \n",
- " \n",
- " 665 \n",
- " 1.645900 \n",
- " \n",
- " \n",
- " 670 \n",
- " 1.769000 \n",
- " \n",
- " \n",
- " 675 \n",
- " 1.613400 \n",
- " \n",
- " \n",
- " 680 \n",
- " 1.569900 \n",
- " \n",
- " \n",
- " 685 \n",
- " 1.792000 \n",
- " \n",
- " \n",
- " 690 \n",
- " 1.600800 \n",
- " \n",
- " \n",
- " 695 \n",
- " 1.557700 \n",
- " \n",
- " \n",
- " 700 \n",
- " 1.594300 \n",
- " \n",
- " \n",
- " \n",
- "705 \n",
- " 1.680800 \n",
- "