--- license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer base_model: openai/whisper-small model-index: - name: Whisper Small Chinese Base results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs cmn_hans_cn type: google/fleurs config: cmn_hans_cn split: test args: cmn_hans_cn metrics: - type: wer value: 16.643891773708663 name: Wer --- # Whisper Small Chinese Base This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs cmn_hans_cn dataset. It achieves the following results on the evaluation set: - Loss: 0.3573 - Wer: 16.6439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0005 | 76.0 | 1000 | 0.3573 | 16.6439 | | 0.0002 | 153.0 | 2000 | 0.3897 | 16.9749 | | 0.0001 | 230.0 | 3000 | 0.4125 | 17.2330 | | 0.0001 | 307.0 | 4000 | 0.4256 | 17.2451 | | 0.0001 | 384.0 | 5000 | 0.4330 | 17.2300 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2