File size: 2,390 Bytes
ca905cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
library_name: transformers
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- princeton-nlp/llama3-ultrafeedback-armorm
model-index:
- name: llama-3-8b-instruct-gapo-v2-rouge2-beta10-gamma0.3-lr1.0e-6-he_scale-rerun
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# llama-3-8b-instruct-gapo-v2-rouge2-beta10-gamma0.3-lr1.0e-6-he_scale-rerun

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the princeton-nlp/llama3-ultrafeedback-armorm dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3605
- Rewards/chosen: -16.9816
- Rewards/rejected: -22.7240
- Rewards/accuracies: 0.8455
- Rewards/margins: 5.7425
- Logps/rejected: -2.2724
- Logps/chosen: -1.6982
- Logits/rejected: -1.3613
- Logits/chosen: -1.3520

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 1.2555        | 0.8550 | 400  | 1.3605          | -16.9816       | -22.7240         | 0.8455             | 5.7425          | -2.2724        | -1.6982      | -1.3613         | -1.3520       |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.2.0
- Datasets 2.21.0
- Tokenizers 0.19.1