# use this script to convert any of the models saved to be # compatible with tf2: https://drive.google.com/drive/folders/1GI7i6GpfI-FoklP3vCc6vxe3T9nk3V2n import tensorflow as tf from tensorflow.python.saved_model import signature_constants, tag_constants export_dir = "./app/" # update the below line to point at the desired model downloaded # from the above google drive link graph_pb = "./app/model_salicon_cpu.pb" with tf.io.gfile.GFile(graph_pb, "rb") as f: graph_def = tf.compat.v1.GraphDef() graph_def.ParseFromString(f.read()) sig = {} builder = tf.compat.v1.saved_model.Builder(export_dir) with tf.compat.v1.Session(graph=tf.Graph()) as sess: tf.import_graph_def(graph_def, name="") g = tf.compat.v1.get_default_graph() input = g.get_tensor_by_name("input:0") output = g.get_tensor_by_name("output:0") sig_key = signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY sig[sig_key] = tf.compat.v1.saved_model.predict_signature_def({"input": input}, {"output": output}) builder.add_meta_graph_and_variables(sess, [tag_constants.SERVING], signature_def_map=sig) builder.save()