|
from dataclasses import fields |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import math |
|
from transformers import PreTrainedModel |
|
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast |
|
from transformers.models.auto import AutoModelForCausalLM |
|
|
|
from .config import ModelConfig |
|
from .model import OLMo |
|
|
|
from .configuration_olmo import OLMoConfig |
|
|
|
def create_model_config_from_pretrained_config(config: OLMoConfig): |
|
""" |
|
Utility function |
|
""" |
|
|
|
kwargs = {} |
|
for field in fields(ModelConfig): |
|
kwargs[field.name] = getattr(config, field.name) |
|
|
|
model_config = ModelConfig(**kwargs) |
|
return model_config |
|
|
|
class OLMoPreTrainedModel(PreTrainedModel): |
|
config_class = OLMoConfig |
|
base_model_prefix = "model" |
|
_no_split_modules = ["OLMoBlock"] |
|
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
|
def _init_weights(self, module): |
|
|
|
if isinstance(module, OLMo): |
|
module.reset_parameters() |
|
|
|
class OLMoForCausalLM(OLMoPreTrainedModel): |
|
_tied_weights_keys = [] |
|
|
|
|
|
def __init__(self, config: OLMoConfig): |
|
super().__init__(config) |
|
self.model = OLMo(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> torch.nn.Module: |
|
return self.model.transformer.wte |
|
|
|
def set_input_embeddings(self, value: torch.nn.Module): |
|
self.model.transformer.wte = value |
|
|
|
def get_output_embeddings(self): |
|
if self.config.weight_tying: |
|
return self.model.transformer.wte |
|
else: |
|
return self.model.transformer.ff_out |
|
|
|
def set_output_embeddings(self, value: torch.nn.Module): |
|
if self.config.weight_tying: |
|
self.model.transformer.wte = value |
|
else: |
|
self.model.transformer.ff_out = value |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
attention_bias: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
Returns: |
|
Example: |
|
```python |
|
>>> from transformers import AutoTokenizer, OLMoForCausalLM |
|
>>> model = OLMoForCausalLM.from_pretrained("allenai/OLMo-7B") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-7B") |
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
output_attentions = output_attentions or self.config.output_attentions |
|
output_hidden_states = output_hidden_states or self.config.output_hidden_states |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
assert not output_attentions |
|
|
|
|
|
base_output: Union[BaseModelOutputWithPast, Tuple] = self.model.forward( |
|
input_ids=input_ids, |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
attention_bias=attention_bias, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
|
|
last_hidden_state = base_output.last_hidden_state if return_dict else base_output[0] |
|
|
|
|
|
|
|
if self.config.weight_tying: |
|
logits = F.linear(last_hidden_state, self.model.transformer.wte.weight, None) |
|
else: |
|
logits = self.model.transformer.ff_out(last_hidden_state) |
|
if self.config.scale_logits: |
|
logits.mul_(1 / math.sqrt(self.config.d_model)) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = torch.nn.CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.embedding_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + base_output[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
assert isinstance(base_output, BaseModelOutputWithPast) |
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=base_output.past_key_values, |
|
hidden_states=base_output.hidden_states, |
|
attentions=base_output.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs |
|
): |
|
if past_key_values: |
|
|
|
input_ids = input_ids[:, -1:] |
|
model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values} |
|
|
|
if 'cache_position' in kwargs: kwargs.pop("cache_position") |
|
if past_key_values and ("input_embeds" in kwargs or "inputs_embeds" in kwargs): kwargs.pop("inputs_embeds") |
|
model_inputs.update(kwargs) |
|
|
|
|
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|
|
|
|
|
|
|