English
File size: 31,619 Bytes
886ea5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
from __future__ import annotations

from dataclasses import asdict, dataclass, field
from glob import glob
from pathlib import Path
from typing import (
    Any,
    Dict,
    Iterable,
    List,
    Optional,
    Tuple,
    Type,
    TypeVar,
    Union,
    cast,
)

import torch
from omegaconf import DictConfig, ListConfig
from omegaconf import OmegaConf as om
from omegaconf.errors import OmegaConfBaseException
from torch.distributed.fsdp import MixedPrecision, ShardingStrategy

from .aliases import PathOrStr
from .beam_search import Sampler
from .exceptions import OLMoConfigurationError
from .util import StrEnum

__all__ = [
    "ActivationType",
    "ActivationCheckpointingStrategy",
    "BlockType",
    "LayerNormType",
    "InitFnType",
    "ModelConfig",
    "OptimizerType",
    "OptimizerConfig",
    "SchedulerType",
    "SchedulerConfig",
    "DataConfig",
    "EvaluatorConfig",
    "TokenizerConfig",
    "TrainConfig",
    "PaddingDirection",
    "TruncationDirection",
    "SpeedMonitorConfig",
    "WandbConfig",
    "CompilerConfig",
    "WandbConfig",
    "FSDPPrecision",
    "FSDPWrapStrategy",
    "FSDPConfig",
    "CheckpointType",
]

C = TypeVar("C", bound="BaseConfig")
D = TypeVar("D", bound="DictConfig|ListConfig")


class BaseConfig:
    @classmethod
    def _register_resolvers(cls, validate_paths: bool = True):
        # Expands path globs into a list.
        def path_glob(*paths) -> List[str]:
            out = []
            for path in paths:
                matches = sorted(glob(path))
                if not matches and validate_paths:
                    raise FileNotFoundError(f"{path} does not match any files or dirs")
                out.extend(matches)
            return out

        # Chooses the first path in the arguments that exists.
        def path_choose(*paths) -> str:
            from .util import is_url

            for path in paths:
                if is_url(path) or Path(path).exists():
                    return path
            if validate_paths:
                raise FileNotFoundError(", ".join(paths))
            else:
                return ""

        # Finds the latest checkpoint in a folder.
        def path_last_checkpoint(path) -> str:
            from .util import find_latest_checkpoint

            latest_checkpoint = find_latest_checkpoint(path)
            if latest_checkpoint is None:
                if validate_paths:
                    raise FileNotFoundError(f"Could not find a latest checkpoint at {path}")
                else:
                    return ""
            else:
                return str(latest_checkpoint)

        om.register_new_resolver("path.glob", path_glob, replace=True)
        om.register_new_resolver("path.choose", path_choose, replace=True)
        om.register_new_resolver("path.last_checkpoint", path_last_checkpoint, replace=True)

    @classmethod
    def update_legacy_settings(cls, config: D) -> D:
        """
        Update the legacy config settings whose schemas have undergone backwards-incompatible changes.
        """
        return config

    @classmethod
    def new(cls: Type[C], **kwargs) -> C:
        cls._register_resolvers()
        conf = om.structured(cls)
        try:
            if kwargs:
                conf = om.merge(conf, kwargs)
            return cast(C, om.to_object(conf))
        except OmegaConfBaseException as e:
            raise OLMoConfigurationError(str(e))

    @classmethod
    def load(
        cls: Type[C],
        path: PathOrStr,
        overrides: Optional[List[str]] = None,
        key: Optional[str] = None,
        validate_paths: bool = True,
    ) -> C:
        """Load from a YAML file."""
        cls._register_resolvers(validate_paths=validate_paths)
        schema = om.structured(cls)
        try:
            raw = om.load(str(path))
            if key is not None:
                raw = raw[key]  # type: ignore
            raw = cls.update_legacy_settings(raw)
            conf = om.merge(schema, raw)
            if overrides:
                conf = om.merge(conf, om.from_dotlist(overrides))
            return cast(C, om.to_object(conf))
        except OmegaConfBaseException as e:
            raise OLMoConfigurationError(str(e))

    def save(self, path: PathOrStr) -> None:
        """Save to a YAML file."""
        om.save(config=self, f=str(path))

    def asdict(self, exclude: Optional[Iterable[str]] = None) -> Dict[str, Any]:
        out = asdict(self)  # type: ignore
        if exclude is not None:
            for name in exclude:
                if name in out:
                    del out[name]
        return out


class LayerNormType(StrEnum):
    default = "default"
    """
    The default LayerNorm implementation, equivalent to PyTorch's built-in version.
    """

    low_precision = "low_precision"
    """
    A low-precision version of the default LayerNorm.
    """

    rms = "rms"
    """
    An RMSNorm implementation. When using ``torch.compile`` this is
    probably the fastest implementation.
    """


class ActivationType(StrEnum):
    gelu = "gelu"
    relu = "relu"
    swiglu = "swiglu"


class BlockType(StrEnum):
    sequential = "sequential"

    llama = "llama"
    """
    A block similar to the sequential block with slightly different
    implementations of operations like attention to imitate the behavior of Llama.
    """


class InitFnType(StrEnum):
    mitchell = "mitchell"
    """
    The strategy suggested to us by Mitchell Wortsman from UW.
    This uses a truncated normal distribution with an adaptive standard deviation that depends
    on the size of the weights as well as the depth of the layer.
    """

    normal = "normal"
    """
    All weights are initialized from the same normal distribution.
    """

    kaiming_normal = "kaiming_normal"
    """
    All weights are initialized with the Kaiming method from a normal distribution.
    Note this currently won't work with FSDP.
    """

    fan_in = "fan_in"
    """
    "Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
    is the input dimensionality of the kernel.
    """

    full_megatron = "full_megatron"
    """
    This is what metaseq calls "full megatron init". It is the init used for Llama 2.
    """


@dataclass
class ModelConfig(BaseConfig):
    """
    OLMo (model) configuration.
    """

    # Note that the defaults for these attributes are equivalent to the base GPT2 model.

    d_model: int = 768
    """
    The hidden size of the model.
    """

    n_heads: int = 12
    """
    The number of self-attention heads.
    """

    n_kv_heads: Optional[int] = None
    """
    The number of heads to use for keys and values. Defaults to `n_heads`.
    Set this to ``None`` or ``n_heads`` for normal multi-head attention.
    Set this to 1 for multi-query attention.
    Set it to some in-between value for Llama2-style grouped query attention.
    """

    clip_qkv: Optional[float] = None
    """
    Clip QKV to this value when set.
    """

    n_layers: int = 12
    """
    The number of layers/blocks.
    """

    mlp_ratio: int = 4
    """
    The ratio of the inner MLP dimensionality to ``d_model``.
    This is only used when ``mlp_hidden_size`` is not set.
    """

    mlp_hidden_size: Optional[int] = None
    """
    Set the exact hidden size for the MLP. Otherwise the inner MLP hidden size will be set to `mlp_ratio * d_model`.
    """

    activation_type: ActivationType = ActivationType.swiglu
    """
    The activation function to use within the MLP layers.
    """

    block_type: BlockType = BlockType.sequential
    """
    The transformer block implementation.
    """

    block_group_size: int = 1
    """
    The number of blocks to group together into a single parent block.
    This has no affect on the number of parameters in the model and is only used to wrap groups
    of blocks together with a single FSDP wrapper during training.
    """

    alibi: bool = False
    """
    If ``True``, use ALiBi embeddings. Mutually exclusive with ``rope``.
    """

    alibi_bias_max: float = 8.0
    """
    Maximum absolute value of ALiBi bias.
    """

    rope: bool = False
    """
    Use rotary positional embeddings (RoPE). Mutually exclusive with ``alibi``.
    """

    rope_full_precision: bool = True
    """
    If ``True``, apply RoPE embeddings at full precision regardless of the input type. Otherwise,
    apply RoPE at the precision of the input.
    """

    flash_attention: bool = False
    """
    If ``True``, use ``FlashAttention``.
    """

    attention_dropout: float = 0.1
    """
    The dropout probability within the attention modules.
    """

    multi_query_attention: Optional[bool] = None
    """
    Deprecated. Use n_kv_heads instead.
    """

    attention_layer_norm: bool = False
    """
    Apply layer norm to the keys and queries within the attention mechanism.
    This can help stabilize training.
    """

    residual_dropout: float = 0.1
    """
    The dropout probability for the MLP and attention output within each block.
    """

    embedding_dropout: float = 0.1
    """
    The dropout probability for embeddings.
    """

    layer_norm_type: LayerNormType = LayerNormType.default
    """
    The layernorm implementation to use.
    """

    layer_norm_with_affine: bool = True
    """
    Whether to include bias and weight parameters for the layer norms.
    This only affects layer norms that are immediately followed by a linear layer in the forward pass,
    so everything except QK-norms. To turn off affines for QK norms as well, set :attr:`attention_layer_norm_with_affine`
    to ``False``.
    """

    attention_layer_norm_with_affine: bool = True
    """
    Toggle affine transform for the QK norms.
    """

    max_sequence_length: int = 1024
    """
    The maximum input sequence length supported by the model.
    """

    include_bias: bool = True
    """
    Whether or not to include bias parameters in linear layers.
    In PaLM, they got rid of all bias terms because they found that large
    models tend to have near 0 bias terms anyway.
    """

    bias_for_layer_norm: Optional[bool] = None
    """
    Whether or not to include bias parameters in layer norm.
    This is separate from the include_bias parameter, because of a ROCm crash when biases are disabled in
    layer norm.
    When this is None (the default), it inherits the setting from include_bias.
    """

    scale_logits: bool = False
    """
    If ``True``, scale the output logits by ``1 / sqrt(d_model)``.
    """

    vocab_size: int = 50257
    """
    Vocabulary size of the model.
    """

    embedding_size: Optional[int] = 50304
    """
    The number of embeddings, i.e. the number of tokens. If set to ``None`` it will default
    to ``vocab_size``. If ``vocab_size`` is not a multiple of 128, setting this to the
    next multiple of 128 that's greater than ``vocab_size`` can improve throughput
    substantially.
    """

    weight_tying: bool = True
    """
    Whether to tie output linear weights to the input embedding.
    """

    eos_token_id: int = 50256
    """
    The ID of the end-of-sentence special token.
    """

    pad_token_id: int = 50256
    """
    The ID of the token to use for padding. Defaults to the ID of the EOS token.
    """

    init_device: Optional[str] = None
    """
    The torch device to use when initializing the model parameters, e.g. "cpu", "cuda:0", "meta".
    """

    init_fn: InitFnType = InitFnType.normal
    """
    The weight initialization strategy.
    """

    init_std: float = 0.02
    """
    The standard deviation to use when initializing weights with a "fixed distribution" ``init_fn``, such
    as "normal".
    """

    init_cutoff_factor: Optional[float] = None
    """
    A positive factor used to scale the cutoff values when initializing weights with a "fixed distribution" ``init_fn``, such
    as "normal". Setting this to None means values are not cutoff.
    """

    precision: Optional[str] = None
    """
    Precision used to train/evaluate with. You shouldn't set this directly.
    See :data:`TrainConfig.precision` instead.
    """

    ternary: bool = False
    """
    Use ternary BitLinear layer from "The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits" (https://arxiv.org/pdf/2402.17764.pdf)
    """

    @property
    def effective_n_kv_heads(self) -> int:
        if self.n_kv_heads is None:
            if self.multi_query_attention is True:
                return 1
            else:
                return self.n_heads
        else:
            if self.multi_query_attention is None:
                return self.n_kv_heads
            if self.multi_query_attention:
                n_kv_heads_should_be = 1
            else:
                n_kv_heads_should_be = self.n_heads
            if self.n_kv_heads == n_kv_heads_should_be:
                return n_kv_heads_should_be
            else:
                raise OLMoConfigurationError(
                    "You can't set `multi_query_attention` and `n_kv_heads` at the same time."
                )


class OptimizerType(StrEnum):
    lionw = "lionw"
    adamw = "adamw"


@dataclass
class OptimizerConfig(BaseConfig):
    name: OptimizerType = OptimizerType.lionw
    learning_rate: float = 1.0e-4
    weight_decay: float = 0.01
    betas: Tuple[float, float] = (0.9, 0.95)

    no_decay_norm_and_bias: Optional[bool] = None
    """
    Deprecated. Use ``decay_norm_and_bias`` and ``decay_embeddings`` instead.
    """

    decay_norm_and_bias: bool = False
    decay_embeddings: bool = False
    metrics_log_interval: Optional[int] = None
    """
    The interval with which to collect and log detailed parameter-specific metrics.
    This only applies when logging to W&B, since these metrics won't be logged to the console.
    If not set, defaults to the wandb `log_interval`.
    """

    def __post_init__(self):
        self.betas = tuple(self.betas)  # type: ignore[assignment]

    @classmethod
    def update_legacy_settings(cls, config: D) -> D:
        new_config = config.copy()
        if om.is_dict(new_config):
            assert isinstance(new_config, DictConfig)

            if hasattr(new_config, "name") and new_config.name == "decoupled_lionw":
                new_config.name = "lionw"
                if hasattr(new_config, "eps"):
                    del new_config.eps

        return new_config


class SchedulerType(StrEnum):
    cosine_with_warmup = "cosine_with_warmup"
    linear_with_warmup = "linear_with_warmup"
    inverse_sqrt_with_warmup = "inverse_sqrt_with_warmup"
    max_scheduler = "max_scheduler"
    constant = "constant"


class SchedulerUnits(StrEnum):
    steps = "steps"
    tokens = "tokens"


@dataclass
class SchedulerConfig(BaseConfig):
    name: SchedulerType = SchedulerType.cosine_with_warmup
    units: SchedulerUnits = SchedulerUnits.steps
    t_warmup: Union[int, float] = 100
    t_max: Optional[Union[int, float]] = None
    alpha_f: float = 0.1

    grad_clip_warmup_steps: Optional[Union[int, float]] = None
    """
    The warmup period for which the max grad norm (or norm ratio) will be set to its
    warmup value of `max_grad_norm * grad_clip_warmup_factor`.
    """

    grad_clip_warmup_factor: Optional[float] = None
    """
    The ratio of the max allowed gradient norm (or norm ratio) for clipping during the warmup period
    vs after the warmup period.
    """


class PaddingDirection(StrEnum):
    right = "right"
    left = "left"


@dataclass
class DataConfig(BaseConfig):
    paths: Optional[List[str]] = None
    datasets: Optional[Dict[str, List[str]]] = None
    label_mask_paths: Optional[List[str]] = None
    pad_direction: PaddingDirection = PaddingDirection.right
    generate_attention_mask: bool = False
    num_workers: int = 0
    drop_last: bool = False
    pin_memory: bool = False
    prefetch_factor: Optional[int] = None
    persistent_workers: bool = False
    timeout: int = 0
    seed: Optional[int] = None


class EvaluatorType(StrEnum):
    downstream = "downstream"
    lm = "lm"


@dataclass
class EvaluatorConfig(BaseConfig):
    label: str
    type: EvaluatorType = EvaluatorType.lm
    data: DataConfig = field(default_factory=DataConfig)
    device_eval_batch_size: Optional[int] = None
    subset_num_batches: Optional[int] = None


class TruncationDirection(StrEnum):
    right = "right"
    left = "left"


@dataclass
class TokenizerConfig(BaseConfig):
    identifier: str = "gpt2"
    truncate_direction: TruncationDirection = TruncationDirection.right


@dataclass
class WandbConfig(BaseConfig):
    project: Optional[str] = None
    entity: Optional[str] = "ai2-llm"
    group: Optional[str] = None
    name: Optional[str] = None
    tags: Optional[List[str]] = field(default_factory=lambda: ["watching"])
    log_artifacts: bool = False
    rank_zero_only: bool = True
    log_interval: int = 1


@dataclass
class SpeedMonitorConfig(BaseConfig):
    window_size: int = 100
    gpu_flops_available: Optional[Union[float, int]] = None


@dataclass
class CompilerConfig(BaseConfig):
    mode: Optional[str] = None
    """
    The mode to compile the model in. At the moment this can be "default",
    "reduce-overhead" (useful for smaller models/batches), or "max-autotune"
    (the fastest for larger models, but takes a long time to compile).
    """

    fullgraph: bool = False
    """
    Whether it is OK to break model into several subgraphs when compiling.
    Note that this is not compatible with FSDP.
    """

    backend: str = "inductor"
    """
    The backend to use.
    """


class FSDPWrapStrategy(StrEnum):
    by_block = "by_block"
    """
    Wrap each OLMo block with its own FSDP instance.
    """

    by_block_and_size = "by_block_and_size"
    """
    Like 'by_block' but `wte` and `ff_out` will be wrapped separately as well.
    """

    by_block_group = "by_block_group"
    """
    Wrap each block group together into its own FSDP instance.
    This requires :attr:`~ModelConfig.block_group_size` to be bigger than 1.
    """

    by_block_group_and_size = "by_block_group_and_size"
    """
    Like 'by_block_group' but `wte` and `ff_out` will be wrapped separately as well.
    """

    size_based = "size_based"
    """
    Used PyTorch's default size-based auto wrap policy.
    """

    one_in_two = "one_in_two"
    one_in_three = "one_in_three"
    one_in_four = "one_in_four"
    one_in_five = "one_in_five"


class FSDPPrecision(StrEnum):
    pure = "pure"
    """
    Equivalent to :class:`torch.distributed.fsdp.MixedPrecision` with ``param_dtype``, ``reduce_dtype``,
    and ``buffer_dtype`` all set to the autocast precision data type.
    """

    mixed = "mixed"
    """
    Equivalent to :class:`torch.distributed.fsdp.MixedPrecision` with ``param_dtype``, and ``buffer_dtype``
    set to the autocast precision data type, while ``reduce_dtype`` is set to fp32.
    """


@dataclass
class FSDPConfig(BaseConfig):
    use_orig_params: bool = True
    """
    This must be ``True`` if using ``compile`` or you want to track the parameter norm during training.
    """

    sharding_strategy: ShardingStrategy = ShardingStrategy.FULL_SHARD

    wrapping_strategy: Optional[FSDPWrapStrategy] = None
    """
    The wrapping strategy to use. If ``None``, the default, the model is wrapped with a single top-level
    FSDP instance.
    """

    precision: FSDPPrecision = FSDPPrecision.pure


class CheckpointType(StrEnum):
    sharded = "sharded"
    unsharded = "unsharded"
    sharded_ephemeral = "sharded_ephemeral"


class ShardedCheckpointerType(StrEnum):
    torch_new = "torch_new"
    torch_legacy = "torch_legacy"
    local = "local"


class ActivationCheckpointingStrategy(StrEnum):
    whole_layer = "whole_layer"
    """
    Checkpoint every transformer layer.
    """

    one_in_two = "one_in_two"
    """
    Checkpoint one in two transformer layers.
    """

    one_in_three = "one_in_three"
    """
    Checkpoint one in three transformer layers.
    """

    one_in_four = "one_in_four"
    """
    Checkpoint one in four transformer layers.
    """

    two_in_three = "two_in_three"
    """
    Checkpoint two out of every three transformer layers.
    """

    three_in_four = "three_in_four"
    """
    Checkpoint three out of four of every transformer layers.
    """

    fine_grained = "fine_grained"
    """
    Focus checkpointing on where it is cheap to recompute and saves most memory.
    """


@dataclass
class TrainConfig(BaseConfig):
    """
    OLMo training configuration.
    """

    run_name: Optional[str] = None
    """
    The name of the run.
    """

    seed: int = 6198
    """
    Used to seed all initial RNG states.
    """

    epoch: Optional[int] = None
    """
    Increment this when starting a new epoch.
    """

    dry_run: bool = False
    """
    If ``True``, don't actually train.
    """

    model: ModelConfig = field(default_factory=ModelConfig)
    """
    OLMo Model configuration.
    """

    optimizer: OptimizerConfig = field(default_factory=OptimizerConfig)
    """
    Optimizer configuration.
    """

    scheduler: SchedulerConfig = field(default_factory=SchedulerConfig)
    """
    Learning rate scheduler configuration.
    """

    data: DataConfig = field(default_factory=DataConfig)
    """
    Training data configuration.
    """

    restore_dataloader: bool = True
    """
    When restarting, restore the data loader to where it left off.
    If you restarting in order to train on a different dataset, set this to ``False``.
    """

    fast_forward_batches: Optional[int] = None
    """
    When restarting, use this to fast-forward the dataloader beyond the last checkpoint.
    This can be useful when restarting due to a loss spike in order to skip the data that
    corresponded to the spike.
    """

    evaluators: List[EvaluatorConfig] = field(default_factory=list)
    """
    Evaluation configurations.
    """

    eval_interval: int = 1000
    """
    How often (in terms of batches) to run evaluations.
    """

    tokenizer: TokenizerConfig = field(default_factory=TokenizerConfig)
    """
    Tokenizer configuration.
    """

    save_folder: str = "./"
    """
    The directory to save checkpoints to.
    """

    remote_save_folder: Optional[str] = None
    """
    A folder in a cloud bucket to upload saved checkpoints to.
    """

    canceled_check_interval: int = 50
    """
    How often (in batches) to check if the run has been canceled or reached its time limit.
    """

    save_interval: int = 1000
    """
    How often (in terms of steps) to save sharded training state checkpoints.
    """

    save_interval_unsharded: Optional[int] = None
    """
    How often (if at all) to save unsharded training state checkpoint.
    For large models it can be costly to save these, so it usually makes sense to save
    these less often than regular (sharded) training checkpoints.
    """

    save_interval_ephemeral: Optional[int] = None
    """
    How often (if at all) to save ephemeral sharded checkpoints. These checkpoints are the same
    as those saved every `save_interval` except that at most only the most recent one of these is kept.
    This is useful when you want to checkpoint often for restarts in case of failures, but don't
    want to keep the majority of these checkpoints.

    For example, suppose you want to keep your checkpoints at every 1000 steps, but you also want to save
    a temporary checkpoint every 100 steps in case your job fails. In that case you would
    set `save_interval=1000` and `save_interval_ephemeral=100`.
    """

    save_num_checkpoints_to_keep: int = -1
    """
    How many sharded checkpoints to keep.
    """

    save_num_unsharded_checkpoints_to_keep: int = -1
    """
    How many unsharded checkpoints to keep.
    """

    save_overwrite: bool = False
    """
    If ``True``, overwrite any conflicting checkpoint files.
    """

    force_save_unsharded: bool = False
    """
    Save an unsharded checkpoint before training (even during a dry run).
    Use this option with `--load-path={PATH}` and `--dry_run` to convert a sharded
    checkpoint into an unsharded checkpoint.
    """

    no_pre_train_checkpoint: bool = False
    """
    Skip saving pre-train checkpoint.
    """

    load_path: Optional[str] = None
    """
    The path to a training checkpoint to restore/resume from.

    Note that you can make use of the "path.last_checkpoint" Omegaconfig YAML resolver here, which takes
    a local or remote directory and resolves to the latest checkpoint (sharded or unsharded) in that directory.
    For example,

    ```bash
    --load_path='${path.last_checkpoint:s3://ai2-llm/checkpoints/7b/v1_5-mix-run-001}'
    ```
    """

    load_path_sharded_checkpointer: Optional[ShardedCheckpointerType] = None
    """
    The sharded checkpointer type to use to load the initial checkpoint from ``load_path``.
    """

    reset_optimizer_state: bool = False
    """
    When this is set, we restore the model from a checkpoint (if given), but we leave the optimizer uninitialized.
    We also set a new learning rate schedule that does a new warmup, such that it intercepts the original learning
    curve (according to the current learning rate schedule settings), and continues from there.
    """

    reset_trainer_state: bool = False
    """
    When this is set we don't restore the trainer state from a checkpoint.
    """

    sharded_checkpointer: ShardedCheckpointerType = ShardedCheckpointerType.torch_legacy
    """
    The name of the sharded checkpointer to use to save (sharded) checkpoints throughout training.
    """

    new_style_checkpoints: Optional[bool] = None
    """
    Deprecated. Use ``sharded_checkpointer`` instead.
    """

    max_duration: Union[int, str] = 10000
    """
    How long to train for.

    If specified without a unit (the default), the units are assumed to be steps.
    You can also specify this in terms of tokens, for example: `max_duration="2e12T"` means train until
    2 trillion tokens.
    """

    global_train_batch_size: int = 512
    """
    The effective global batch size.
    """

    device_train_batch_size: Optional[int] = None  # calculated automatically
    """
    Don't set this manually. This will be set to ``global_train_batch_size // world_size``.
    """

    device_train_microbatch_size: int = 16
    """
    The number of instances passed to the model in a single forward-backward pass. You should set
    this as large as you can based on available GPU memory.
    """

    device_eval_batch_size: int = 16
    """
    The number of evaluation instances passed to the model in a single forward pass on each device.
    """

    eval_subset_num_batches: int = -1
    """
    The number of batches to use for downstream evaluation from each dataset.
    """

    eval_on_load: bool = False
    """
    When resuming from a checkpoint, run the evaluation loop right away.
    """

    device_train_grad_accum: Optional[int] = None  # calculated automatically
    """
    Don't set this manually. This will be set to ``device_train_batch_size // device_train_microbatch_size``.
    """

    max_grad_norm: Optional[float] = None
    """
    Clip gradient norms to this value if set.
    """

    max_grad_norm_ratio: Optional[float] = None
    """
    If set, gradient norms will be clipped to `max_grad_norm_ratio * exp_avg(norm(grad))`.
    This takes priority over `max_grad_norm` when set.
    """

    precision: Optional[str] = None
    """
    Precision to train with (e.g. "amp_bf16", "amp_fp16", or "fp32").
    """

    wandb: Optional[WandbConfig] = None
    """
    Weights & Biases configuration.
    """

    speed_monitor: SpeedMonitorConfig = field(default_factory=SpeedMonitorConfig)
    """
    Speed monitor configuration.
    """

    console_log_interval: int = 1
    """
    How often to log to the console.
    """

    compile: Optional[CompilerConfig] = None
    """
    Settings for compiling the model with ``torch.compile()``.
    """

    fsdp: FSDPConfig = field(default_factory=FSDPConfig)
    """
    Fully sharded data parallel settings.
    """

    softmax_auxiliary_loss: bool = False
    """
    If ``True``, we add the auxiliary loss function from PaLM that encourages the softmax
    normalizing term to be close to 0.
    """

    time_limit: Optional[float] = 60 * 60 * 47.5
    """
    The maximum amount of time to train for before saving a checkpoint and ending early.
    On LUMI we have 48 hours max per job, so we default to just under 48 hours to give us time
    to write out a final checkpoint.
    """

    extra_steps_after_cancel: int = 10
    """
    Under certain conditions when a run is canceled we train for a few extra steps after saving
    the final checkpoint so that when the run is restarted from the latest checkpoint we have some
    overlap in metrics.
    """

    early_stopping_factor: Optional[float] = None

    save_data_indices: bool = True
    """
    Save training data indices from each batch for each worker.
    """

    python_profiling: bool = False
    """
    Whether to run the Python profiler on batches 6, 7, and 8.
    """

    torch_profiling: bool = False
    """
    Whether to run the PyTorch profiler on batches 6, 7, and 8.
    """

    stop_at: Optional[int] = None
    """
    Stop at a specific step.
    """

    stop_after: Optional[int] = None
    """
    Stop after a specific number of steps.
    """

    activation_checkpointing: Optional[ActivationCheckpointingStrategy] = None
    """
    The activation checkpointing strategy to use.
    """

    fused_loss: Optional[bool] = None
    """
    Whether to use the fused CE loss function from `flash-attn`.
    """

    @property
    def autocast_precision(self) -> torch.dtype:
        if self.precision == "amp_bf16":
            return torch.bfloat16
        elif self.precision == "amp_fp16":
            return torch.float16
        elif self.precision == "fp32":
            return torch.float32
        else:
            raise ValueError(f"Unexpected precision type '{self.precision}'")

    @property
    def fsdp_precision(self) -> MixedPrecision:
        if self.fsdp.precision == FSDPPrecision.pure:
            return MixedPrecision(
                param_dtype=self.autocast_precision,
                reduce_dtype=self.autocast_precision,
                buffer_dtype=self.autocast_precision,
            )
        elif self.fsdp.precision == FSDPPrecision.mixed:
            return MixedPrecision(
                param_dtype=self.autocast_precision,
                reduce_dtype=torch.float32,
                buffer_dtype=self.autocast_precision,
            )
        else:
            raise NotImplementedError(f"{self.fsdp.precision}")

    @classmethod
    def update_legacy_settings(cls, config: D) -> D:
        new_config = config.copy()
        if om.is_dict(new_config):
            assert isinstance(new_config, DictConfig)

            if hasattr(new_config, "activation_checkpointing"):
                if new_config.activation_checkpointing is False:
                    new_config.activation_checkpointing = None
                if new_config.activation_checkpointing is True:
                    new_config.activation_checkpointing = ActivationCheckpointingStrategy.whole_layer

            if hasattr(new_config, "optimizer"):
                new_config.optimizer = OptimizerConfig.update_legacy_settings(new_config.optimizer)

        return new_config