File size: 4,563 Bytes
5dcafdd 976bc5d 5dcafdd 976bc5d 5dcafdd 976bc5d f0847e8 976bc5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
base_model: Deci/DeciLM-7B
inference: false
language:
- en
license: apache-2.0
model-index:
- name: DeciLM-7B
results: []
model_creator: Deci
model_name: DeciLM-7B
model_type: deci
prompt_template: |
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
quantized_by: Inferless
tags:
- finetune
- vllm
- GPTQ
- Deci
pipeline_tag: text-generation
---
<!-- markdownlint-disable MD041 -->
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://pbs.twimg.com/profile_banners/1633782755669708804/1678359514/1500x500" alt="Inferless" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">Serverless GPUs to scale your machine learning inference without any hassle of managing servers, deploy complicated and custom models with ease.</p>
</div>
<!-- <div style="display: flex; flex-direction: column; align-items: flex-end;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div> -->
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;"><a href="https://0ooatrmbp25.typeform.com/to/nzuhQtba"><b>Join Private Beta</b></a></p></div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">Go through <a href="https://tutorials.inferless.com/deploy-deci-7b-using-inferless">this tutorial</a>, for quickly deploy of <b>DeciLM-7B</b> using Inferless</p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# DeciLM-7B - GPTQ
- Model creator: [Deci](https://huggingface.co/Deci)
- Original model: [DeciLM-7B](https://huggingface.co/Deci/DeciLM-7B)
<!-- description start -->
## Description
This repo contains GPTQ model files for [Deci's DeciLM-7B](https://huggingface.co/Deci/DeciLM-7B).
### About GPTQ
GPTQ is a method that compresses the model size and accelerates inference by quantizing weights based on a calibration dataset, aiming to minimize mean squared error in a single post-quantization step. GPTQ achieves both memory efficiency and faster inference.
It is supported by:
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
<!-- description end -->
<!-- repositories-available start -->
## Shared files, and GPTQ parameters
Models are released as sharded safetensors files.
| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
| ------ | ---- | -- | ----------- | ------- | ---- |
| [main](https://huggingface.co/Inferless/deciLM-7B-GPTQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 5.96 GB
<!-- README_AWQ.md-provided-files end -->
<!-- README_AWQ.md-text-generation-webui start -->
<!-- How to use start -->
## How to use
You will need the following software packages and python libraries:
```json
build:
cuda_version: "12.1.1"
system_packages:
- "libssl-dev"
python_packages:
- "torch==2.1.2"
- "vllm==0.2.6"
- "transformers==4.36.2"
- "accelerate==0.25.0"
```
Here is the code for <b>app.py</b>
```python
from vllm import LLM, SamplingParams
class InferlessPythonModel:
def initialize(self):
self.sampling_params = SamplingParams(temperature=0.7, top_p=0.95,max_tokens=256)
self.llm = LLM(model="Inferless/deciLM-7B-GPTQ", quantization="gptq", dtype="float16")
def infer(self, inputs):
prompts = inputs["prompt"]
result = self.llm.generate(prompts, self.sampling_params)
result_output = [[[output.outputs[0].text,output.outputs[0].token_ids] for output in result]
return {'generated_result': result_output[0]}
def finalize(self):
pass
``` |