File size: 4,563 Bytes
5dcafdd
976bc5d
 
 
 
5dcafdd
976bc5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dcafdd
976bc5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0847e8
976bc5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
base_model: Deci/DeciLM-7B
inference: false
language:
- en
license: apache-2.0
model-index:
- name: DeciLM-7B
  results: []
model_creator: Deci
model_name: DeciLM-7B
model_type: deci
prompt_template: |
  <|im_start|>system
  {system_message}<|im_end|>
  <|im_start|>user
  {prompt}<|im_end|>
  <|im_start|>assistant
quantized_by: Inferless
tags:
- finetune
- vllm
- GPTQ
- Deci
pipeline_tag: text-generation
---
<!-- markdownlint-disable MD041 -->

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://pbs.twimg.com/profile_banners/1633782755669708804/1678359514/1500x500" alt="Inferless" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;">Serverless GPUs to scale your machine learning inference without any hassle of managing servers, deploy complicated and custom models with ease.</p>
    </div>
<!--     <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div> -->
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;"><a href="https://0ooatrmbp25.typeform.com/to/nzuhQtba"><b>Join Private Beta</b></a></p></div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">Go through <a href="https://tutorials.inferless.com/deploy-deci-7b-using-inferless">this tutorial</a>, for quickly deploy of <b>DeciLM-7B</b> using Inferless</p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# DeciLM-7B - GPTQ
- Model creator: [Deci](https://huggingface.co/Deci)
- Original model: [DeciLM-7B](https://huggingface.co/Deci/DeciLM-7B)

<!-- description start -->
## Description

This repo contains GPTQ model files for [Deci's DeciLM-7B](https://huggingface.co/Deci/DeciLM-7B).

### About GPTQ

GPTQ is a method that compresses the model size and accelerates inference by quantizing weights based on a calibration dataset, aiming to minimize mean squared error in a single post-quantization step. GPTQ achieves both memory efficiency and faster inference.

It is supported by:

- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code

<!-- description end -->
<!-- repositories-available start -->

## Shared files, and GPTQ parameters

Models are released as sharded safetensors files.

| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
| ------ | ---- | -- | ----------- | ------- | ---- |
| [main](https://huggingface.co/Inferless/deciLM-7B-GPTQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 5.96 GB

<!-- README_AWQ.md-provided-files end -->

<!-- README_AWQ.md-text-generation-webui start -->

<!-- How to use start -->
## How to use
You will need the following software packages and python libraries:
```json
build:
  cuda_version: "12.1.1"
  system_packages:
    - "libssl-dev"
  python_packages:
    - "torch==2.1.2"
    - "vllm==0.2.6"
    - "transformers==4.36.2"
    - "accelerate==0.25.0"
```


Here is the code for <b>app.py</b>
```python
from vllm import LLM, SamplingParams

class InferlessPythonModel:
    def initialize(self):

        self.sampling_params = SamplingParams(temperature=0.7, top_p=0.95,max_tokens=256)
        self.llm = LLM(model="Inferless/deciLM-7B-GPTQ", quantization="gptq", dtype="float16")

    def infer(self, inputs):
        prompts = inputs["prompt"]
        result = self.llm.generate(prompts, self.sampling_params)
        result_output = [[[output.outputs[0].text,output.outputs[0].token_ids] for output in result]

        return {'generated_result': result_output[0]}

    def finalize(self):
        pass
```